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Kurzfassung

Die Entwicklung und Analyse von Software durchläuft im Normalfall mehrere Phasen.
Am Anfang steht ein Konzept, das im Fall von Netzwerkprotokolldesign in einem
Netzwerksimulator getestet werden kann. Schließlich erfolgt die Entwicklung eines
Prototyps zur Analyse einer konkreten Implementierung. Simulation und Proto-
typen haben beide ihre spezifischen Vor- und Nachteile. Netzwerkemulation erlaubt
die Verknüpfung beider Ansätze, allerdings muss für eine realistische Analyse im Hin-
blick auf das Zeitverhalten die Simulation in Echtzeit ablaufen können. Dies ist in
komplexeren Simulationsszenarien nicht gewährleistet. Diese Diplomarbeit entwirft
und setzt eine Testumgebung um, die durch Kapselung eines x86-Systems in Xen
eine Synchronisation der Implementierung mit beliebig komplexen und langsamen
Simulationen erlaubt und gleichzeitig eine Analyse des Zeitverhaltens ermöglicht.

Abstract

Software design generally employs different techniques in different phases for anal-
ysis. In the beginning, a new network protocol may be conceptualized and tested
in a network simulator. Later on, a prototype of the actual implementation is thor-
oughly analyzed. Both approaches have their specific up- and downsides. Network
emulation allows to combine both to gather additional data and facilitate easier
prototype testbed layouts. For meaningful analysis however, especially in regard to
timing behavior, the simulation has to be real-time capable. This is often not the
case for complex simulated scenarios. This diploma thesis designs and implements a
synchronization that allows to run any x86 operating system with arbitrarily com-
plex simulations. By encapsulating the OS in the Xen hypervisor, it relieves the
simulation from the real-time capability constraint while still maintaining realistic
timing behavior.
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1
Introduction

Whenever a new piece of software is developed, it has to be tested for proper func-
tionality. Furthermore, if it contains a new concept, such as (in the field of network
communications, which this thesis concentrates on) a new networking protocol, it
has to be analyzed to make sure there are no conceptual errors. Two important
ways of analysis are simulation and prototyping. In simulation, the concept in its
abstract form is implemented to use it in a simulation environment, and then tests
are run. The main advantage is that it is generally comparably easy to do the step
from concept to a simulation model in contrast to a full prototype that runs on an
end-user system, and it allows for a great deal of flexibility. Once the functionality of
the concept has been implemented in the simulation, networks of arbitrary size and
complexity can be constructed for stress-testing, and tests can be rerun to closely
analyze special cases.

However, simulations abstract from many factors that the final product has to deal
with, such as side-effects from hardware or operating system. At some point, it is
therefore necessary to create a prototype and analyze it in a natural testbed envi-
ronment. Testbeds are limited in size to a couple hundred of prototypes however,
and the latter already introduces a massive cost and effort. Hardware for all the
nodes inside the testbed has to be procured, and every time some part of the proto-
type implementation is changed, all the prototypes have to be updated. Practicality
therefore dictates the maximum number of prototype nodes in the testbed. This is
unfortunate because it would be very desirable to analyze the performance of the
prototype in more complex network topologies.

Consequently, it is desirable to find a way to combine prototyping with simulation.
One way to reach this goal is network emulation, in which a prototype is connected
to the simulation by means of an emulator, that can translate between real net-
work packets from the prototype, and packet messages from the simulator, so that
communication between the two is possible. The problem is that this only works
as long as the simulation is able to run at real-time speed. When it does not, re-
sults measured are not correct in respect to timing information any more, which can
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lead to incorrect behavior. For example, a simulation might take so long to route a
packet to the receiver, and afterwards the ACK packet back to the prototype, that
the prototype assumes it has been lost and retransmits it. In the worst case, this
can lead to an ever-increasing load on the simulation, to the point where it becomes
live-locked (events are created faster than they can be processed, and the simulation
stalls). Unfortunately, simulations tend to run slower and lose their real-time capa-
bilities the more complex the simulation is. But this is exactly the most interesting
use case for network emulation, since small networks can be feasibly analyzed with
a testbed of prototypes only.

The solution would be to synchronize simulation and prototype to each other, so
that the faster can wait for the slower to catch up again. In this case, this means to
stop the prototype. This, however, is easier said than done for end-user computer
systems, such as the x86, since they keep track of time. Even if the operating system
is modified to sleep for certain periods until the simulation has caught up again, a
number of hardware clocks and timers inside the system will make it immediately
noticeable that time has passed. To come back to the prior example, a retransmission
timer would still expire at the same time as before, regardless whether the system
has been put to sleep or not, which means nothing has been won.

Obviously, it is a very tantalizing thought to solve the synchronization problem in
network emulation, because it would allow to analyze how prototype implementa-
tions behave in large network, without the immense cost of creating a testbed of
the same size. This thesis proposes a solution for x86 based systems. It uses the
Xen Hypervisor [9] to disconnect an operating system from directly accessing the
hardware, and modifies it so that two goals are reached:

1. The Operating System must be stoppable and startable at any point in time,
and run for precisely the amount of time assigned.

2. The Operating System must not notice that, during the time it did not run,
any time passed. In other words, although it will run only intermittently, it
must seem to it as if time passed continuously without any gaps.

Under these two constraints, a system can be stopped whenever the simulation falls
behind, and restarted after the latter has caught up. Throughout this work, they will
be referenced as “requirement 1” and “requirement 2”. The prototype can therefore
be synchronized to the simulation. The presented Xen implementation can mask
the passing of time from an OS during descheduled times and accurately control the
execution down to time slices of 10µs, which is therefore the maximum amount of
time the clocks inside simulation and prototype can ever differ.

To complete synchronization set-up, the author developed or reused a few other
components to make the synchronization work as a whole:

1. A central synchronization server∗ that makes sure no prototype or simulation
deviates from the common time by more than a predefined amount.

∗Developed by Elias Weingärtner
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2. A synchronization client† that runs on the same machine as the hypervisor,
and interfaces with Xen to control the execution of the synchronized operating
system.

3. An OMNeT++ scheduler that interfaces with the synchronizer.∗

4. An emulator that translates between network packets and simulator messages,
for the OMNeT++ simulator.‡

Note that on the one hand, while the work described in this thesis uses OMNeT++
[69] as simulator, the changes are generic enough to be easily applicable to most
other discrete event network simulators. On the other hand, while the concept of
using virtualization to encapsulate a prototype can be applied to other virtualizers,
or even full-system simulators such as Simics [50], or processor emulators such as
QEMU [12], the work done for this thesis is too specific as to allow for fast porting
to those.

The rest of this diploma thesis is structured as follows: Chapter 2 will give an
overview over and background information on different components that are impor-
tant to the understanding of the work done. The actual implementation, with an
explanation of how Xen has been changed to reach the two goals for synchroniza-
tion outlined above, how the synchronizer works, etc. is presented in Chapter 3.
Chapter 4 will analyze results of tests that have been conducted. Chapter 5 will
discuss previous work done in related fields, while potential future fields of work will
be proposed in Chapter 6. Finally, Chapter 7 will give a summary.

†Own work
∗Developed by Elias Weingärtner
‡Own work, parts of which have been adapted from an earlier work by Joachim Riedl [59].
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2
Background

In any field of work that involves creating large numbers of a developed invention,
testing and analysis are important steps from the initial idea to the final product.
No car in the world is built right away from the initial concept art. Especially in
engineering, the testing can take several years and will pass through different phases.

While the testing standards might not be quite as high in the field of computer
science, testing and analysis still play a vital role in the development of new commu-
nication systems, such as network applications or communication protocols. Testing
will also typically pass through different phases. Early on, and for a long time during
the development, simulation is a prime choice; later on, prototype implementations
will give additional insight into potential problems.

2.1 Network Simulation

The most widely used type of network simulation is discrete event simulation (DES).
In this type of simulation, every action by any node that changes the simulation’s
overall state is represented as an event. Every event, in turn, is assigned a certain
point in time at which it will happen. The fact that an event is assigned a time in
the future at its creation time means that the simulation can maintain an ordered
event list at all times. This allows the simulation to advance directly to the next
event in the queue after it has finished processing the current one. Time is therefore
not modeled as a constant flow, but rather in discrete steps.

In network simulation, DES is generally used in the form of packet-level simulation.
OMNeT++ [69], the simulator used in this thesis, as well as the also widely-used ns-
2 [28], are both packet-level DES systems. This allows for a very detailed simulation,
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since communication between nodes closely resembles the communication behavior
in the real world.1

The advantage of simulation is the high degree of flexibility. It is possible to eas-
ily and quickly set up networks consisting of hundreds, thousands, or hundreds of
thousands of nodes. For example, if the goal is to evaluate a new network protocol,
its behavior is modeled in the simulator—for example, as a C++ class in the case
of OMNeT++—and then can be defined to be part of the network stack of each of
the nodes in the network. Many simulation systems give the user a high degree of
interactivity, such as stopping the simulation or stepping through it event by event,
and provide some sort of visualization that will allow to monitor certain parts of the
simulated network. Also, some simulators allow to take snapshots of the simulation
state. This, coupled with the fact that DES is deterministic (except for randomness
deliberately inserted into the system by the user), facilitates repeatable analysis of
critical situations. However, the results apply only to the concept of the network
protocol, as it has been modeled inside the simulator, and can therefore expose faults
only in the concept, such as placing too much load on some nodes in the network,
or low performance for others. Simulation generally abstracts from the internals of
nodes: There is no operating system running on them with a complete network stack
and tasks to schedule, and whatever happens inside the node is generally modeled
to run without any time consumption—and if there are models to account for it,
they are necessarily simplified. While this elimination of side-effects facilitates re-
peatability and determinism, these very side effects can have a noticeable influence
on the performance in the real world. In other words, the simulation models only a
concept, not any actual implementation.

2.1.1 The OMNeT++ Discrete Event Simulator

The OMNeT++ simulator is highly modular. It allows to define behavior and inter-
faces in the form of C++ classes, termed“simple modules”. Interface are defined in a
two-fold way. From the simulator core’s point of view, each module is derived from a
base class that already defines certain methods that are called by OMNeT++ when-
ever an event of a specific type occurs. For example, the method handleMessage()

is called whenever a message is received by the module and has to be processed.
From the module’s point of view, the interface consists of a number of defined in-
put and output gates, through which messages are sent and received. These gates
are connected to gates of other modules via connections that can also be assigned
specific properties, such as propagation delay.

Furthermore, it is possible to combine several simple modules into a compound
module. Recursively, compound modules can be combined with other compound
modules into new compound modules without any limit to the created hierarchy.
These compound modules are defined by a simple description language. Such a
module consists of gates and of its contained modules. A contained module’s gate
can either be connected to the corresponding gate of another contained module, or
to a gate of the compound module. An example of this structure is depicted in

1There are other ways, such as fluid simulation [48], which can reduce the computational com-
plexity compared to packet-level simulation, and is therefore suited for very large and complex
simulations, if details down to every single package are not needed.
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Figure 2.1 A schematic structure of OMNeT++ modules.

Figure 2.1. Arrows represent connections between gates (small boxes). A compound
module is created from the combination of two simple modules, and in turn is used,
together with another simple module, in the definition of another compound module.
Compound modules form some sort of black box: From the outside, they cannot be
discriminated from simple modules, and their behavior is defined by the co-action of
their contained modules, without them being visible from the outside. In the end,
the simulated network that is created by the user is nothing more than a complex
compound module that contains every node that was defined.

The extendability of OMNeT++ is demonstrated by the number of published sim-
ulation models. While most of the models extend the functionality for network
simulation, such as the INET framework [38], which will be described in the next
section, OverSim [11], which was designed to simulate overlay networks, as used
in many peer-to-peer applications, or the Mobility Framework [25], which supports
the simulation of wireless networks, where nodes oftentimes are not stationary. The
simulator is not limited to network simulation (although this is the field where it is
most widely used); for example, there also exists a model that allows the simulation
of a SCSI bus and devices.2 Moreover, modules are not limited to defining new
behavior inside the simulation model. For example, it is also possible to write a
new scheduling model to influence how OMNeT++ schedules its event queues and
processes events. This is exactly what has been done to synchronize OMNeT++
against other components and is described in Section 3.2.2.

This combination of simple modules that can be defined in an exact way via a stan-
dard programming language, and compound modules that allow the combination
and reusage of modules, makes OMNeT++ both powerful and flexible. The pos-
sibility to define module parameters that can modify some parts of the module’s
behavior eases the creation of large networks of similar, but not necessarily identical
nodes. However, the general limitations of simulations obviously still apply.

2.1.2 The INET Framework

The INET framework [38] is a collection of modules for the OMNeT++ simulator.
It contains modules that model packets of different types, such as TCP or ICMP,
and the encapsulation and decapsulation of one packet type into another, modules
that simulate the behavior of a network layer, queues, interfaces, etc., and a few

2Or rather, existed. The module is not maintained any more. Nevertheless, it serves as an
example to the wider range of applications that can be served by the OMNeT++ simulator, it
was mentioned by Varga when he presented his work on OMNeT++ [69], and the sources are still
available.
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definitions of full-fledged hosts with a complete networking stack, as well as hubs,
switches and routers, compounded from the other modules.

Simulation events are to a large extent associated with payloads and their packaging,
sending, unpackaging and processing. Every packet that would be sent by a real
hardware system is simulated as an independent (chain of) event(s). Typically, an
event such as “package this payload as UDP” would also send out the package via
an output gate to the network layer module, where it would be processed and fit
with an IP header, from which it would be sent to the data link layer, and so on.
Self-addressed messages that wake up a component at a certain point in the future
can be used to simulate package retransmission timers.

All in all, the INET framework allows detailed simulation and monitoring of the
innards of network stacks as they are typical today in virtually all networked hosts
that employ the TCP/IP model of communication. For this work, the INET frame-
work was used together with OMNeT++ to create hosts inside the simulation that
could communicate with real systems that ran directly on hardware.

2.2 Prototyping

For performance evaluation under realistic conditions, simulations are not viable. To
acquire such data, the concept is generally implemented as a prototype and run in a
testbed. This allows for the highest accuracy in analysis, since the prototype is an
exact replication of the final product. Prototype testing will involve ensuring that no
side effects introduced by the hardware, operating system, and other elements that
were not simulated, will have a decidedly negative influence on the performance.
The trade-off is that the testing is more complicated. Not only does introspection
become much more tedious than in simulation: There is no kernel programmer that
has not used the printk/recompile cycle. Also, some side effects are hard to trace
down: The reason that the sensor node’s operation breaks down may be due to a
programming error—or maybe the power supply is not powerful enough and leads
to brownouts.

There is another fundamental problem with prototype testing. It works reasonably
well for small-scale investigations, i.e. if the network comprises at most a few dozen
nodes. If the numbers are greater than this, testbeds become problematic: The cost
increases with each node that has to be bought in hardware, and the implementation
has to be distributed among all of them; this has to be repeated whenever the imple-
mentation changes, for example when a bug has been found and fixed. Furthermore,
if the analysis involves performance investigation on nodes that are scattered around
the world, maintaining the testbed becomes a logistical nightmare. And while open
platforms such as PlanetLab [19] exist for testbed investigation, they do not grant
exclusive access to their resources. This is necessary, however, if the prototype in-
volves changes in the operating system itself, and is not confined to a user-space
application. Moreover, without exclusive rights, it can not be ensured that other
concurrently running programs will skew the results of the performance evaluation.
It therefore remains a necessity to construct your own testbed environment, which
is generally impossible for very large scale tests.
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Figure 2.2 Network Emulation

2.3 Emulation

This leaves the evaluator with two approaches, each with its own advantages and
disadvantages, and disjoint fields they are feasible in. It also means that for the
important area of meaningful performance evaluation of prototypes in large scale
networks, neither of the two ways works in a satisfactory way. Emulation combines
the specific strengths of both approaches. A special component (the emulator) is
charged with the task to translate between the two worlds of simulation and pro-
totype implementation; in other words, to create a functional coupling between the
two entities.

One way to combine the two, called environment emulation, is to insert a framework
into the simulation that allows to run the implementation designed for the prototype
from within the simulator. Generally, work in this field has focused on integrating
an operating system’s network stack into the simulator for use by the nodes, typi-
cally the FreeBSD stack [14, 41], which facilitates communication between the nodes
via standard internet protocols, instead of the custom-tailored simulator messages.
While this approach reduces the amount of abstraction from an actual implemen-
tation, it has two drawbacks: Firstly, a certain emulation is specific to the inserted
implementation. In the aforementioned case, it will produce meaningful results only
if the prototype runs on FreeBSD. Secondly, computational complexity, side effects
arising from a full-fledged operating system, and timing (which is influenced by the
former two) are still not accounted for.

The other approach is called network emulation, and this thesis will focus on this
field. Figure 2.2 shows a conceptual diagram of its set-up. Rather than to insert
the prototype into the simulation, the two components stay separate, connected via
a standard network connection, and it is the emulator’s task to create a gateway
to translate between the two entities and provide the functional coupling this way.
Whenever a packet is sent by the prototype to a node inside the simulation, the
emulator will convert the real packet into a message that is understood by the
simulation and contains the original payload, and vice versa. A typical way to
create such an emulator is described in Kevin Fall’s groundbreaking work [27]: On
the prototype’s side, all the packets that are addressed to a simulated node are
captured and sent to the simulator’s side of the emulator. There, they are translated
into messages understood by the simulation, and inserted at a certain point in the
network topology that, to the other nodes inside the network, does not look different
from any other simulated node.
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2.4 Synchronization

However, there is one big problem with network emulation: prototype and simulation
handle the passing of time in totally different ways. While for the former, time passes
in a continuous fashion at natural speed, a discrete event simulation jumps from point
to point in time to whenever an event is scheduled. This means that prototype and
simulation will rarely agree on what time it is. If the goal is to get meaningful
information about the performance of a prototype, this is a serious drawback. For
example, if a simulation has few events to process during a certain period, it will
run much faster than real time. If now the prototype is supposed to act as a hub
for simulated nodes, it will receive their packages at a much faster rate than would
happen under real circumstances, and conversely, will seem slow in its reaction to
the simulated nodes. Fortunately, this is a solvable problem. Since the simulation
itself runs as an application on a real computer, and therefore can ask the underlying
operating system about the current time, it can slow itself down to never run faster
than real time. The time then passes at the same rate in the simulation and the
prototype: they are synchronized to each other.

The real problem is if the opposite happens. If the simulation has many events to
process, it will slow down and not be able to advance in real time. Now, every
simulated node will seem slow to the prototype. What is even worse is that this
can form a vicious circle: If nodes seem unresponsive to the prototype, it may send
out retransmissions of packets, or reason that the node is down and try to connect
to another one that offers the same service. When those packets are translated and
inserted into the simulation, the amount of events to handle increases, which will slow
down the simulation even more. This situation is called overloading or livelocking.
The latter describes the situation in which the simulation cannot progress in time any
more at all because there are more events incoming that need immediate processing
than can be handled. In contrast to the first problem, this one is much harder to
solve. Fall already recognized it and noted, 9 years ago, that“[a]t present, there is no
simple solution to this issue” [27]. To the knowledge of the author, nobody has come
forth with a simple solution so far, although the essential idea is easy enough. To get
prototype and simulation to agree about the current time, there are two solutions:
speed up the simulation or slow down the prototype.

Speeding up the simulation can be realized in two ways. The easiest is to just buy
faster hardware for the simulator. Failing that, one can distribute the DES over
several computers to allow for parallel processing [51]. This parallel DES, however,
opens up another class of problems: Now these simulations have to be synchronized
against each other. DES relies on the fact that the events in the event queue are
processed in order. If two events that are scheduled at different times both change the
global status of the simulation, the latter must not be processed before the earlier.
Otherwise, causality errors will occur (future events influencing the behavior of past
ones). Also, an event can create a follow-up event, which may or may not change
the simulation and influence later events. In short, the decision when to parallelize
processing of events and when not is not an easy problem. Besides, it is as futile as
buying new hardware: In both cases, for every given amount of computing power,
there exist simulations which are large and/or complex enough to break the real-time
constraint.
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(a) Situation at starting time.

(b) Prototype waits at the barrier.

(c) Simulation catches up.

(d) Barrier is lifted, new barrier is set.

(e) Simulation waits at the barrier.

Figure 2.3 An example of Conservative Time Window synchronization.

Slowing down the prototype may sound easy, but simply reducing the speed at which
a system runs will work only for the most simple systems. Every halfway complex one
has a real time clock, and every operating system has a way to measure the passing
of time and will not be easily tricked. Therefore, every approach to solve the problem
will have to find a way to either slow down or halt these hardware clocks at will. For
this thesis, the author has discarded this as infeasible because in an x86 computer
system there are too many hardware time sources that are nigh impossible to reach,
and done the next best thing: disconnect the system from the hardware timers by
using virtualization. Section 2.5 will give insight into the technique of virtualization,
while Section 2.7 will give an introduction into the timekeeping facilities of a x86
computer.

Finally, with a solution to the problem of how to slow down one part of the network
emulation to the speed of the other if needed, and vice versa, a decision has to be
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Figure 2.4 A message sent from the faster component to the slower may appear
to have traveled backwards in time.

made about how to synchronize the two. Fortunately, the aforementioned parallel
DES community has tackled the problem of synchronizing simulations running in
parallel for a long time, and come up with several solutions (for an overview, see
[29]). Unfortunately, most of them will not work in our special case, where one of the
synchronized entities is not a simulation, but a prototype implementation running
on a real computer system. The reason is that virtually all algorithms for parallel
DES rely on the fact that it is possible to look into the future at distinct events, and
decide whether they will influence each other (the conservative approach), or even
process events first and roll back later if some events did turn out to influence each
other (the optimistic approach). Rollback is not possible on the prototype without
taking regular checkpoints of the full system state. This is a large amount of data
on an x86 system with a decent amount of RAM. The amount of checkpoints that
would have to be created to make rollbacks work properly does not seem feasible.
Furthermore, the analysis whether an event influences another will work properly
within one system only. In our network emulation setup, where at any given point,
a message can be inserted into the simulation by the emulator because a packet was
sent by the prototype without the simulator being able to know beforehand, deciding
what events are safe to execute is impossible.

One algorithm, however, will work in our case too. The Conservative Time Window
(CTW) algorithm allows every synchronized component to run for a certain amount
of time, after which it will block until all others have also reached the barrier time
that was set. Then the barrier is lifted and set to another point in the future. This
means that every component is assigned a time slice of equal size; a simulation will
then process all events with a scheduled time before the end of that slice, and a
prototype will run for the length of the slice before it is stopped again. Figure 2.3
gives an example of how the Conservative Time Window algorithm works. The
small arrows denote the current time as it is witnessed by simulation and prototype,
respectively. Figure 2.3(a)) shows the state of the synchronized components at the
start of the synchronization. In Figure 2.3(b), the simulator was not able to process
its events in real time, and while the prototype has already finished its assigned time
slice, the simulator has not. The CTW algorithm ensures that the prototype waits
for the simulation at the barrier. When the simulator has also reached the barrier
(Figure 2.3(c), the barrier is lifted and set to another point in the future (Figure
2.3(d)). Both simulation and prototype start execution again. If now there are few
enough events so that the simulator can process them faster than in real time, it is
its turn to wait at the barrier (Figure 2.3(e)).

In parallel DES, deciding on the size of the time window will influence the amount of
possible parallelization [29]. Typically, the larger the window the smaller the amount
of possible parallelization. In our case, however, the amount of parallelization is
fixed to simulation and prototype running in parallel. This raises the question what
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Ethernet Network Speed Barrier Size
10 MBit 51.2 µs

100 MBit 5.12 µs
1 GBit 512 ns

10 GBit 51.2 ns

Table 2.1 Time a minimum-size (64 byte) Ethernet package takes to transfer over
the cable at different speeds.

the appropriate window size for our case is. To decide this, it is necessary to first
determine what potential errors too large time slices can generate. Figure 2.4 shows
a causality error: If a fast simulation A is synchronized to a real system B, B will
reach the barrier before A. If it sends a packet late during the barrier time, there
is a high chance that, after it is translated by the emulator and inserted into the
simulation, it will appear to have traveled backwards in time. Therefore, the most
straightforward solution is to choose the time slices small enough so that they are
just sufficient for one packet to be sent over network cable that connects prototype
and simulation. This way, packet arrival times will always be aligned with the end
of a time window, and therefore no erratic time travel of packets is possible. Since
the time a packet spends on the wire is determined by the size of the packet, the
assigned time slices have to be as small as the time the shortest packet spends on the
wire. For the typical case of an Ethernet connection, the shortest packet is defined
by the standard to be 64 bytes long. The time such a packet spends on the wire
can be approximated by its size divided by the line speed. Table 2.1 lists times for
common Ethernet speeds.

However, in the case of network emulation, even longer time slices cannot introduce
causality errors, because of two reasons. First, a reply to a message can never reach
the sender before the original message has been sent out. If the sender and receiver
both reside inside the simulation, the event queue will ensure that the order is kept.
If, on the other hand, the sender is a simulated node, and the receiver the prototype
(or vice versa), the original message has to traverse the emulator first before it
reaches its destination, and the reply has to traverse it again. Therefore, the order
of related messages will not change, and a reply cannot influence the request that
it answered. Second, even the order of unrelated messages is never changed. Again,
the order of messages sent between two simulated nodes is ensured by the simulator’s
event queue, and in the case of communication between simulation and prototype,
the emulator will translate the messages in the order it received them.

Nevertheless, while no causality errors can occur, the travel time of messages can
still be skewed, such as in the example depicted in Figure 2.4. Note, however, that
the size of the time slice (the time between two barriers), constitutes an upper bound
to the amount of skewing that can occur. Even in the case of a message sent from
one side (simulation or prototype) at the very end of its slice to the extremely slow
other side, which is still at the very beginning, the skewing can never be more than
the time slice. The opposite is also true: if the very slow side sends out a message
early during its slice, but due to its slowness, the receiver has already finished and
waiting at the barrier, the message will be delivered at the very beginning of the
next slice, still holding the upper bound.
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Figure 2.5 Synchronized network emulation

Nevertheless, since the system presented in this thesis has been built to analyze
network implementations, and no protocol exists that requires timing accuracy down
to micro- or even nanoseconds (nor would it be prudent to design one that is supposed
to be usable on the Internet), some skewing can be deemed acceptable, and therefore
higher barrier times than the theoretical ones that Table 2.1 suggests are feasible.
The reader should always keep in mind that the goal of this thesis is to create a tool
to analyze network protocols, not timing down to almost CPU instruction-level. The
limitation should still be realized when running analysis: some protocols may report
timing information down to the single-digit microsecond range. The standard Linux
ICMP ping utility is a good example (examples of this will later be seen in Chapter
4). The CTW synchronization’s limitation means that timing is only guaranteed to
be correct down to slice size. Every measurement that includes timing data with
sub-slice resolution has to be taken with a grain of salt, because the numbers are
not guaranteed to be correct.

Finally, note that the CTW algorithm requires an entity in the network, the syn-
chronizer or synchronization server, that sets the barriers. To do so, it will require
information from the synchronized components about what their local time is. In
turn, it will send out run permissions to all components to run up to the next barrier
time whenever all have reached the current barrier. The concept of synchronized
network emulation is shown in Figure 2.5. In addition to the concept of network
emulation depicted earlier, the synchronizer has been added as an additional com-
ponent. While the emulator creates and maintains a functional coupling between
simulation and prototype and translates communication between the two nodes, the
synchronizer creates a synchronous coupling by receiving time information from the
two components, and sends out permissions to run for a specified amount of time.

2.5 Virtualization

To facilitate synchronized network emulation, the author has employed virtualization
of real systems. The reasons for this have been already been explained in Section 2.4.
Virtualization is a concept by which a program, called the virtual machine monitor
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(VMM), allows several other programs (or operating systems) to run on a computer
at the same time. It generally does so by giving the other programs the illusion of
a full computer system (the virtual machine) at their exclusive disposal, while in
reality, the access to hardware is shared between them. The idea of virtualization is
all but new: It had already surfaced by the late 1950ies to early 1960ies as a means
for time-sharing on large mainframes [20, 65], and IBM used it by the mid-1960ies in
the form of CP/CMS [1] (after earlier efforts, only involving partial virtualization,
such as CTSS and M44/44X [22], had proven insufficient).3 In 1974, Gerald Popek
and Robert Goldberg published groundbreaking work on the field of virtualization
[56]. They classified all CPU instructions into three groups:

1. Privileged instructions: Instructions that trap, i.e. a switch to kernel mode if
it happens outside of kernel mode

2. Control-sensitive instructions: Instructions that change configuration of pa-
rameters, i.e. processor registers

3. Behavior-sensitive instructions: Instructions that behave differently depending
on configuration of parameters, i.e. processor registers

For example, a test for zero is a control-sensitive instruction if the result is saved in
a specific “zero register”, and a jump if zero is a behavior-sensitive instruction if it
looks at this register for its decision to jump or not. Furthermore, they required a
VMM to fulfill three properties:

• Efficiency: All nonsensitive instructions must be directly executed on the hard-
ware, i.e. without intervention from the VMM.

• Resource control: The virtual machine must not be able to affect the resources
outside of those assigned to it.

• Equivalence: Overall, the behavior of a program inside the virtual machine
must be the same as if it was run natively.

Popek and Goldberg proved that it was possible to construct such a VMM if the set
of sensitive (both control- and behavior-sensitive) instructions is a subset of the set
of privileged instructions. However, for many computers, this condition is still not
true. Most important, the x86 CPUs do no meet these requirements and therefore
are not virtualizable in this classic sense [61].

One help that x86 CPUs, starting from the 80386 and its new “protected mode”, did
bring with them is the concept of protection rings. While many architectures have
only two modes, privileged and unprivileged, the developers of the 80386 took the
concept of 4 of those rings from the VAX architecture, with ring 0 being the most
privileged and ring 3 the least. The design idea even went so far as to construct the
rings in a way that allowed to run old pre-80386 applications that only made use

3The interested reader can find a very accessible overview over the development of IBM virtual
machines, with an emphasis on the 1960ies and 1970ies, in an article written by Melinda Varian
[70].
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Figure 2.6 The two types of virtual machine monitors. To the left, a type 1 VMM,
to the right, a type 2 VMM.

of the previously existing so-called “real mode”, in a virtual environment, basically
allowing to virtualize an old real-mode DOS operating system on the new 80386
CPU. However, this technique never saw much use. Newer operating systems that
operated in protected mode still only made use of two rings, with ring 0 being used
for the privileged and ring 3 for the unprivileged mode (see Figure 2.7(a)). Ring 1
and 2 fell into disuse, to a point where they were not even included in the 64 bit
specification x86-64 [18].

Although these protection rings lend themselves to the idea of virtualization, even
most VMMs available today forego them in favor of other techniques. One of the
most widely used ones involves changing the code in a way that keeps the equivalence
to the original one (and in fact directly executes most of it unchanged), but replaces
the offending instructions. Keep in mind that instructions that are sensitive, but
not privileged, break virtualization. This approach makes sure, in a most direct
way, that no such instruction is executed, but rather replaced by a functionally
equivalent (set of) instruction(s). This can be done while the machine is running
and is named “binary translation” [63]. (This on-the-fly translation is not to be
confused with an older concept by the same name, that fully converts programs from
one computer’s binary code to another before their execution, as in [64].) Recently,
the situation on the x86 front has changed somewhat, to the point where x86 CPUs
can be fully virtualized. This concept of hardware virtualization, sometimes also
named“hardware-assisted virtualization”, or“hardware virtualization mode”(HVM),
is discussed in Section 2.5.3.

VMMs can be classified into two types. A type 1 VMM runs directly on the hardware;
any operating system running on a machine that uses this type of virtualization is
by definition a virtualized guest operating system, i.e. it runs on top of the the
VMM. A type 2 VMM runs as an application inside an operating system. Therefore
there is a distinction between the natively-running host operating system, which the
VMM runs on, and which has direct access to all hardware, and the guest operating
system(s), which is (are) virtualized. Figure 2.6 illustrates the difference between
the two concepts.

2.5.1 The Xen Hypervisor

The work of this thesis has been done on the Xen hypervisor [9], for reasons discussed
in Section 2.5.4. First of all, it should be noted that the term “hypervisor” has
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(a) Ring usage in a normal
system.

(b) Ring usage in a paravir-
tualized system.

(c) Ring usage in a normal
x86-64 system.

(d) Ring usage in a paravir-
tualized x86-64 system.

(e) Ring usage in hardware
virtualized x86-64 system.

Figure 2.7 Usage of protection rings on the x86 and the x86-64 systems. Note that
there is no x86 system that supports hardware virtualization. (after a
similar figure in [18])

no unanimously accepted definition. In some cases, it is used interchangeably with
“virtual machine monitor”, in other cases, it might only apply to VMMs that employ
paravirtualization4, or only to one type of VMMs. Since this work mainly deals with
Xen, starting from chapter 3, the term “hypervisor” will be used as a synonym for
“Xen”, and“virtual machine monitor”or“VMM”to denote the technology as a whole.

Xen comes in the form of a small kernel that is booted instead of a standard operating
system, and will act as a layer of indirection between the virtualized operating
systems and the hardware. It therefore is a type 1 VMM. The design choice in
Xen’s case was to produce a kernel as minimal as possible, and delegate most of
the hardware interfacing via drivers as well as the control over Xen to a privileged
domain. (Domains are Xen’s name for virtual machines.) Thus it resembles a micro
kernel architecture, with process and memory management inside the kernel, and
drivers separate from it.

While efforts to port Xen to other hardware platforms, such as ARM, are underway
[37], it originally was developed for the x86 series of CPUs. As has been described in
Section 2.5, this platform comes with certain limits to the amount of virtualization
(in the pure sense) that can feasibly be done. Binary translation has already been
introduced there. Instead, Xen uses two other approaches to virtualize on the x86.

4See Section 2.5.2 for an explanation of the concept of paravirtualization
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2.5.2 Paravirtualization

The privileged domain, also called dom0 (because it is the first started domain and
therefore receives the numerical identifier 0), is generally a Linux that is aware that it
is running on top of a Xen hypervisor. As such, it has been modified to work in a very
efficient way with the hypervisor. Such a way of virtualizing an operating system is
called paravirtualization. In this case, not the original OS has been virtualized, but
instead, changes in the kernel where necessary have made the interfacing between
the virtualizer and the operating system more efficient. Paravirtualization is not
limited to the privileged domain, but normal, unprivileged domains can also be run
in this fashion. This way of using modified operating systems was the original way to
work with Xen. As has been hinted at before, Xen makes use of the protection rings
of the x86 architecture. An operating system on this architecture expects to run in
ring 0. Since the hypervisor needs control, it should run in a higher privilege level.
Since there is no “ring -1”, Xen does the next best thing: It runs in ring 0 itself, and
runs the kernel in ring 1 (see Figure 2.7(b)). So the operating system has not only
been changed for more efficiency in running on top of the hypervisor, it also has to
be fit into its new place. Specifically, code in ring 1 isn’t allowed to run privileged
instructions. It therefore has to hand over control to the hypervisor whenever it
wants to do something that involves these. Xen introduces a concept that is very
similar to what applications do when they want to run operations they are not
allowed to execute themselves: In Unix, they invoke a system call by pushing the
relevant data and a number that identifies the requested call onto the stack (or into
special registers), and raise an interrupt. The operating system’s interrupt handler
reacts to it, pops the data, executes the operation on behalf of the application, and
finally passes control back to it. If a paravirtualized OS wants to execute a privileged
operation, it does something similar: It invokes a hypercall that works in exactly the
same way, with the difference that the call is serviced by the hypervisor. A hypercall
literally is a system call for operating systems. The paravirtualization approach is
slightly different on x86-64 machines [52]. Since these have only two rings (see Figure
2.7(d)), the guest kernel has to share a privilege ring with its applications. This has
effects on system call handling by the guest OS and memory management, but for
this work, the difference is of no importance.

The fact that the operating system is customized into its role has several advantages.
It was already pointed out that it can make the virtualized OS faster compared to
other virtualization techniques because it can work in unison with the virtualizer.
For example, since Xen already has to keep track of the passing of time for its own
purposes, a paravirtualized domain can save itself this rather complicated task and
just receive time information directly from the hypervisor. In addition, several fea-
tures become available only in the case of paravirtualization. For instance, operating
systems for personal computers generally do not expect the amount of memory to
change (although swap space size may change over time, e.g. Linux has the swapon

command for this). A paravirtualized system can be notified by the Xen Hypervisor
that it has received more memory to work with; conversely, the OS can yield excess
memory to the hypervisor so that it can be assigned to another domain.

However, there is one obvious drawback to this approach: The OS must have its
source code readily available, there must be a (legal) way to distribute the changed
sources, and developers must have invested the time to change the operating system
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for paravirtualization. In the case of Linux, this is no problem: sources are readily
available, they are licensed under the GNU General Public License (GPL) which
allows for redistribution of modified sources, and the original Xen developers imple-
mented the modifications so they had a privileged domain to run with Xen. This
is obviously not true for an operating system such as Windows XP: While during
the early stages of the Xen development, there was an in-house port for Windows
paravirtualization, the licensing agreements prevented the developers from ever pub-
lishing it. As such, while paravirtualization is a very interesting concept, it is only
suitable for a subset of virtualization tasks.

2.5.3 Hardware Virtualization

For these reasons, the Xen developer community has recently invested much time
into supporting unmodified operating systems [58]. This development was facilitated
by the advent of x86 CPUs that support so-called hardware virtualization (HVM).
The current technologies are called AMD-V [5] in the case of AMD CPUs, and
Intel-VT [68] in the case of Intel CPUs. This allows the operating system (in this
case Xen) to run other operating systems (Xen domains) unmodified. Conceptually,
these technologies implement a virtual “ring -1” that was desired but not available
in the case of paravirtualization. The hypervisor runs in a special mode in which it
is invisible to the operating system and is allowed to perform a few new additional
operations, such as setting aside memory to save CPU states when leaving a virtual-
ized domain, as well as for starting, stopping, and entering it. Thus, the OS can run
unmodified and no operations will fail because they are transparently handled by
the hypervisor if necessary. In the concept of privilege rings, the setup looks similar
to Figure 2.7(e).

The main advantage is that, at least in theory, every operating system ever created
for a x86 computer can be virtualized. The disadvantage is additional overhead:
Every action that is sensitive as per the earlier Popek-Goldberg definition has to
be handled by the hypervisor. The operating system, which is generally expecting
to execute those instructions itself, cannot optimize them properly. This means
that a context switch has to take place between the virtualized domain and the
hypervisor every single time, and context switches are always expensive. In contrast,
paravirtualization can employ tricks such as batch hypercalls (multicalls) to reduce
the number of context switches.

Also, in order to be usable by the HVM domain, every piece of hardware has to
be virtualized, i.e. its behavior remodeled in Xen so that the domain can access
it the same way it would access actual hardware. This means that some generic
pieces of hardware are modeled that are wide-spread and old enough so that it
can be expected that every operating system will have driver support for them. Xen
supplies, among others, virtualized versions of a RTL8139 network card and a generic
VGA capable display adapter to the HVM domains. The major drawback is that
the emulation overhead reduces the performance compared to the paravirtualized
case. Paravirtualization employs a concept called“split driver model”. As mentioned
before, device drivers are not a part of Xen; instead, Xen relies on the privileged
domain to provide drivers for hardware access. For hardware access, paravirtualized
domains can therefore interface directly with the privileged domain and its drivers
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via means of shared memory and event notification, which means that the stub front-
end drivers in a paravirtualized domain are exceedingly simple, straightforward, and
(generally) fast. On the other hand, for hardware virtualization, a device access has
first to traverse the full driver inside the virtualized operating system’s kernel, be
handed off to Xen for emulation, and from there to the privileged domain to another
driver.

2.5.4 Comparison of Virtual Machine Monitors

Nowadays, users have the choice between several solutions to run a virtual machine
on their computer. Therefore, an educated decision has to be made which one to use,
which in this case lead to the Xen hypervisor. One of the most popular producers
of VMMs is VMWare, Inc. [72] with their line of VMWare products. VMWare
Workstation is a type 2 VMM that employs binary translation, while VMWare ESX
Server is a type 1 VMM. Microsoft’s Virtual PC is a type 2 VMM that is free of
charge. None of these have their source code freely available, which ruled them out
from the beginning, since it would not have been possible to make the necessary
changes to the VMM. Recently, Linux’s KVM [44], also a type 2 hypervisor that
exclusively works with hardware virtualization, has reached levels of maturity where
it can be used for production systems. It would have been another viable choice
since the source code is available, but Xen has the advantage of being bundled
with a scheduler that can be harnessed more easily for the goals of this work (see
Section 2.6). In addition, KVM relays its I/O emulation to (a modified version of)
QEMU, while Xen does it inside the hypervisor, which makes it easier to change the
values the emulated hardware timers report to the hardware virtualized domains.
(Xen’s I/O emulation is based on the QEMU sources, but since it resides inside the
hypervisor, it is easy to base the time warping on scheduling information from the
scheduler).

A totally different approach would have been to use a CPU emulator, such as QEMU
[12] or Bochs [47], or a full-system simulator, such as Simics [50]. While the schedul-
ing would have been more accurate with them (down to instruction or even cycle
level), they are necessarily much slower in their execution, because they do not run
any instructions natively on the CPU. It will be shown later in Chapter 4 that Xen’s
scheduling is accurate enough for network emulation purposes, and instruction- or
even cycle-accuracy is not needed.

2.6 The Xen sEDF Scheduler

Xen runs directly on the hardware, and the guest domains run on top of Xen. This
is similar in concept to an ordinary operating system, which runs on the hardware,
with the user-space applications on top of the OS. Therefore, just as scheduling is
important to operating systems, it is important to Xen, with the difference that
it is not user-space applications that are scheduled for multi-tasking purposes, but
operating systems. Xen comes with several schedulers and leaves it to the user to
decide which one to use. For this work, the simple earliest deadline first (sEDF)
scheduler has been used, for reasons shown later.
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(a) Task 2 missed its deadline.

(b) Task 2 misses the deadline. However, task 3 and 4 can hold their deadlines.

Figure 2.8 Two examples of missed deadlines for different values of slice s and
deadline d.

Earliest deadline first (EDF) schedulers are typically used in real-time scenarios,
because they ensure that every task, if at all possible, will be run for the assigned
time (called slice) before the deadline runs out [15]. In the case of one-shot tasks
with a certain computation time (slice) s and a deadline d, it can be calculated for
each task k whether it can be fully executed before the end of the deadline. This is
the case if

k∑
i=1

si ≤ di

Figure 2.8 gives examples of missed deadlines. In the first example, task 2 misses its
deadline because

∑2
i=1 si > d2. In the second one, task 2 again misses its deadline

(
∑2

i=1 si > d2), but task 3 and 4 can still hold theirs (
∑3

i=1 si ≤ d3 and
∑4

i=1 si ≤ d4).

In the case of static (i.e. not changing over time), periodic deadlines and tasks
that are continuously rescheduled whenever their deadline runs out (this is the way
the sEDF scheduler schedules Xen domains), these deadlines are equal to periods.
Whenever a deadline is reached, the task is rescheduled in the system with a deadline
in the future of now + period. In the simplest case, all the scheduler has to do now
is run the tasks in order of their deadlines: earliest deadline first (hence the name),
then next earliest, etc. Note that it is possible to miss deadlines if the constraints
set by the run time (slice) and deadline (period) of each task are unsatisfiable. This
is obviously the case if

n∑
i=1

Ui > 1

with the utilization factor of each task Ui = si

pi
the ratio between slice and period,

since the sum of all fractions of computation time the tasks request is greater than
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Figure 2.9 Continuously rescheduled tasks may miss their deadline later on. Here
task 1 can hold its first deadline, but misses the second.

the amount that is available. Conversely, Liu and Layland proved in [49] that the
opposite is also true: a set of n tasks is schedulable if

n∑
i=1

Ui ≤ 1

although this abstracts from the fact that the scheduler itself will also consume
computation time, and requires that the tasks are preemptible. In many cases, it
is not the duty of the scheduler to check for this constraint, but of the user that
chooses the tasks to be run and their slices, deadlines, and periods. Figure 2.9 shows
an example where task 1 can hold its first deadline, but misses the second (and all
further ones—the same is true of task 2) because

∑2
i=1 Ui = 30

40
+ 30

60
> 1. Figure

2.10 gives an example of deadlines that can e held only if the tasks are preemptible.
s1 = 20ms, d1 = 60ms, s2 = 10ms, d2 = 20ms, so there are never 20ms continuously
available during which task 1 could be scheduled without task 2 missing its deadline.

In the case of the Xen sEDF scheduler, the tasks that are scheduled are not the
actual operating systems themselves, at least not directly. Whenever a domain is
created to run an operating system, Xen creates with it one or more virtual CPUs
(VPUs). These VCPUs are visible to the guest operating system as CPUs, with the
effect that a domain with several VCPUs looks like a SMP system from the operating
system’s point of view. The scheduler then schedules those VCPUs as tasks on the
physical CPU(s). It maintains four linked lists for each physical CPU, called PCPU
from here on:5 a runqueue, a waitqueue and two extra queues (the penalty and the
utility queue). These queues contain pointers to the different VCPUs. A simple
EDF scheduler is not work-conserving. This means that if all tasks have used their
slice at some point, but no deadline has been reached (at which point a task would
be rescheduled), the scheduler will have no tasks to run, and spin or run an idle
task. This can be seen in Figure 2.10 between 50ms and 60ms. A work-conserving
scheduler, on the other hand, will choose one of the tasks and run it in this extra
time. Generally, for fairness reasons, it will make sure that over time, every task
gets a fair amount of this extra time. sEDF’s utility queue is for this purpose, and
a domain can choose whether its VCPU(s) are allowed to run during extra time or
not.

• The runqueue contains all VCPUs that have not used up their slice this period.
They are ordered by their deadline, earliest deadline first.

• The waitqueue contains all VCPUs that have already used up their slice this
period, and wait for their deadline so that the next period starts. They are
ordered by the start of the next period (i.e. their deadline), earliest first.

5While PCPU, as opposed to VCPU, is not a Xen term, we will use it to make clear the
differences between the two throughout the text
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Figure 2.10 Sometimes deadlines can be held only if the tasks can be preempted.

• The penalty queue contains all VCPUs that were not able to run their full slice
in an earlier period. While this cannot happen in strict real-time systems, it
can in Xen. For example, a VCPU can block if the guest operating system has
nothing but the idle task to run, and when that happens, it yields the PCPU
back to Xen for use by other domains. The blocked VCPU is then woken up
again at a later point when there is work to do, but by that time, it might
have missed its deadline. The penalty queue allows domains to catch up on
that lost time during extra time. The exact circumstances under which this
happens are rather complicated, and are of no concern for the work presented
in this thesis. The interested reader can find detailed information in [24].

• The utility queue contains all VCPUs that are aware of (i.e. are allowed to
run in) extra time, ordered by scores calculated by a special scoring algorithm.
For the same reasons as in the case of the penalty queue, detailed information
is not given here and can again be found in [24].

A VCPU can be on several queues at the same time (a typical example is on the
runqueue and the utility queue), but never on the runqueue and waitqueue at the
same time. Furthermore, while a VCPU can be migrated from one PCPU to another,
it can never be on queues of two different PCPUs simultaneously.

Whenever the scheduler is invoked, it will check how long the currently running
VCPU has run, and subtract that number from its slice. If this reduces the slice to
0, the VCPU is moved from the runqueue to the waitqueue. It then checks whether
there are VCPUs on the waitqueue whose next period has started by now, and moves
them from the waitqueue to the runqueue. Finally, it takes the first VCPU on the
runqueue and schedules it either for the length of its remaining slice, or until the next
VCPU on the waitqueue is ready to be moved to the runqueue, whichever happens
first. If the runqueue is empty, it takes the first domain from the penalty or utility
queue to run it in “extra time”. This makes the sEDF a work-conserving scheduler
since it will never idle, even when all VCPUs’ demands have been met.

To come back to this thesis, the reason why the sEDF scheduler has been chosen
over other options that are shipped with Xen is as follows: While many schedulers
base their decisions on priority levels of tasks, an EDF scheduler directly operates
on time values. Since one of the aims of this work was to let domains run for exactly
specified amounts of time, it comes as a natural choice. Scheduling (at least in
theory) becomes as easy as setting the slice size in the scheduler to the slice size of
the synchronizer.
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2.7 Timekeeping

Every computer system from a certain size upwards, most definitely a x86 system,
needs to be able to keep track of the passing of time. On a macro scale, users
expect to be informed about the time of day, and services that perform tasks such as
defragmentation, backup, or indexing need to be started once a day, week, or month,
preferably at off-times. This time is called the wall clock time, since, just like a clock
hanging on the wall of a room, it measures the passing of time down to a resolution
of seconds, and up to hours, days or years. On a micro scale, a system must be able
to measure the passing of time down to micro- or even nanoseconds—for example
for exact scheduling—and interfacing with hardware with timing constraints. This
time information is typically saved (if not measured at this accuracy) in nanoseconds
since booting, and is called the system time.

Wall clock time is relatively straight-forward to measure and keep track of. Every
x86 system has a real-time clock chip (RTC) that contains a clock with a visible
resolution down to seconds (internally, a 32.768 kHz gives the RTC a resolution of
1

215 s). It is battery-buffered to keep time while the computer itself is turned off. This
time can be read from the RTC, or it can be set by the computer to update it, for
example from information by the network time protocol.

System time is much more complicated. There is not only one hardware device to
aid in timekeeping on this micro scale, but (depending on the production date of
the computer) up to five. All of these do provide a clock that measures the passing
of real time, but are either counters that are increased at high rates, or timers than
can be set and signal an interrupt to the system when they expire.

The first one is the time stamp counter (TSC). Since the Intel Pentium, processors
have an internal counter that is increased with every clock signal (while the clock
signal itself would be a way to measure time, too, it is not accessible by any soft-
or hardware) and can be read via the rdtsc instruction. While this counter can in
theory produce very accurate results (with a 1 GHz processor speed, it increases every
nanosecond), in practice, the results have to be taken with a grain of salt. The reason
is that the system has to calibrate the TSC results against real time to measure how
many TSC increments are equal to a certain period of real time. For instance, newer
processors might not increase the TSC with every clock cycle, but only every 2 to
4 clock cycles. Furthermore, if there is any kind of power management that can
decrease CPU speed, this will mirror in the TSC values: They will now increase at
lower speed than before. And on symmetric multiprocessing systems, each CPU has
its own TSC, and there might be significant differences between the TSCs on the
different CPUs.6 While newer processors try to remedy these shortcomings by having
TSCs synchronized between all CPUs, and increasing at a steady rate independent
of the current CPU speed, this is of little help to operating systems, since they have
to be able to also cope with older TSC implementations. Nevertheless, since the
TSC is the counter with the finest granularity in most x86 systems, it is still used
in some situations.

6To remedy the problems with nonuniform TSCs on SMP systems, both Linux and Xen will do
a calibration during bootup (see smpboot.c) during which all CPUs will run at the same time, for
the same amount of time, and the differences in the counters are measured.



2.7. Timekeeping 25

The second time source, the ACPI Power Management timer (ACPI PMT or simply
PMT) is another counter device that is available on all computers that support ACPI.
Compared to the TSC, it has a fixed frequency of 3.58 MHz at which it increases its
counter. This makes it preferable for most applications, since the frequency cannot
change, as can be the case with the TSC. Nevertheless, in a select few instances, the
resolution might not be high enough.

Third is the programmable interval timer (PIT). As the name suggests, it is a timer
that can be set to a certain interval, and will then issue an interrupt to the system
periodically whenever it expires.7 Its availability in all x86 systems and reliance on a
quartz crystal (which makes the intervals independent from anything else that may
happen in the system) make it one of the most-used timers. For example, Linux
uses it as its main timer interrupt in many configurations.

The local APIC (advanced programmable interrupt controller) can provide another
timer that can be programmed for periodic interrupts. The time source is not a
quartz crystal, but the bus frequency, which makes programming somewhat more
complicated, since it is not the same on all x86 computers. However, it allows for
much longer intervals between timer interrupts because the counter is 32 bits in
length, compared to 16 bits for the PIT. The main advantage, however, is that in
multiprocessor systems, each CPU has a local APIC, and the timer interrupt will
therefore always be handled by the same CPU. This allows to set up timers for each
CPU, which for example allows to handle per-CPU scheduling via this timer. Fur-
thermore, the dependency on the bus frequency facilitates a much higher resolution
(typically around 1µs). This is the basis of the Linux “high resolution timers”. It
is also used by Xen and one of the cornerstones that facilitate the synchronization
presented in this thesis, by allowing scheduling down to very small time slices.

Recently, the High Precision Event Timer (HPET) has been introduced and starts
to be included in x86 systems. It was designed to replace the PIT and has several ad-
vantages over it, most notably more timers (while the PIT has three programmable
timers, only one can generally be used by the OS) that can be programmed to
different intervals, and a much higher resolution.8 The downside is that most com-
puters still do not have a HPET, therefore the operating system has to provide other
timekeeping ways on most systems.

Finally, the RTC also supports a periodic timer mode, which in resolution and
precision is almost equal to the PIT.

It should be clear from this list that timekeeping is all but an easy job for an
operating system. It has to probe which sources are available, choose from them,
calibrate them against each other, and possibly correct values that drift from each
other, always deciding which source to consider the more reliable.

Timekeeping is a two-fold issue for Xen. On the one hand, it has to work with
all these time sources to keep track of time itself. On the other hand, it has to

7The PIT is by far the oldest timer hardware and has existed since the first incarnations of
the IBM PC. Its age shows from several design decisions: The frequency of the quartz crystal was
derived from NTSC television standard to aid the graphics adapter in output on a TV screen;
furthermore, one of the channels inside the PIT is used to drive the PC speaker.

8The HPET specification [40] requires a counter that measures the passing of time in femtosec-
onds (1 ns = 106 fs). Unfortunately, clock drift for every measurement time lower than 100µs is
allowed to be up to 200 ns, or 0.2%, which can add up quickly.
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provide time information to the virtualized domains. Paravirtualization is the more
straightforward case here, since the domains are changed to work in unison with
Xen. Wall clock time is exported by the hypervisor into a shared memory page,
from which it can be read by the paravirtualized OS. The same happens with a
value for “time elapsed since system started”, which can be used for time measuring.
And finally, the periodic timer interrupt is replaced by a timer inside Xen that signals
the OS periodically.

The hardware virtualized case is more complicated to implement, since the domain
is oblivious to the fact that it runs virtualized. Therefore, all these timers have to be
emulated in software9 and their programmed intervals have to be kept track of via
timer queues inside Xen. Since they all work differently in the way their interface is
designed, their timing constraints, and so on, this is a considerable implementation
effort. For this work, it also means that changing the way the timekeeping works
(as will be described in Section 3.4.2) means changing how each of these operates.

9In theory, some of them could be just ignored, so the domain would get the impression that
the system does not have them. However, Xen does emulate all of these.



3
Implementation

In this chapter, the design and implementation of the work done for this thesis will
be explained part by part. The author has tried to find a middle ground between
being too broad and too specific. As such, not every programming trick, variable,
or function will be discussed. A more detailed hands-on list on what configuration
variables are available for the different parts of the system and how to use them can
be found in Appendix A.

Figure 3.1 shows the overall setup that was implemented for this thesis. The syn-
chronization server will be explained in Section 3.1, the synchronization clients in
Section 3.2.1 (Xen side) and Section 3.2.2 (OMNeT++ side), respectively. The way
the data communication is facilitated between both entities is laid out in Section
3.3. Finally, changes done to Xen to drive the scheduler in the desired way, and to
the time representation for synchronized Xen domains will be described in Section
3.4.

Figure 3.1 The synchronized network emulation setup that was implemented.
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3.1 The Synchronization Server

While other pieces of work are much more involved and complicated, the synchro-
nization server is the heart piece of the implementation. Its task is to keep track
of all domains and simulations that have signed up for synchronization, and make
sure that their clocks will be synchronized. The server can be run on any machine,
including but not limited to one of the machines that partake in the synchronization
(via a simulation or domain running on them). As has been explained in Section 2.4,
CTW synchronization requires communication between the synchronization server
and the synchronized components. To facilitate communication between them, there
is a synchronization client running on every machine that is part of the synchronized
network (see Section 3.2), and a simple communication protocol is used. There are
only four different messages sent between server and clients, and they are sent as
UDP packets:

• A “register” message (reg) is sent by the client to the server when it signs up
to be part of the synchronization.

• An “unregister” message (unreg) is sent by the client to the server when it
leaves the synchronized network.

• A “run permission” message (run) is sent by the server to all the clients when
it starts a new time slice.

• A “finished” message (fin) is sent by the client to the server to notify it that
its domain or simulation has finished the assigned time slice.

The process is therefore as follows: When the synchronization server starts, it will
wait until the first client connects. When this happens, it will send out a run

message. The client receives it, instructs the domain or simulation it controls to run
for the assigned time, and afterward will report back with a fin. At this point, there
is only this one single client registered at the server. Consequently, after receiving
the message, it will immediately send out another run permission. This means that
at this point in time, the client is synchronized to only itself, which is hardly useful.

However, as soon as another client registers at the server, meaningful synchronization
starts: The new client will have to wait until the first one has finished the currently
assigned slice and reports back to the server by means of a fin message. The server
will now instruct both clients to run. Then it will wait until both have reported back.
Only then will it allow both clients to run again. So, if one of the clients drives a
Xen domain (or a fast simulation), and the other a simulation that is very complex
and slow, the former will now be required to wait for the latter. This achieves the
CTW synchronization as described in Section 2.4.

There is one twist to how run messages are sent: They are not addressed to the
IP address of the computers housing the client. Rather, the server will send one
broadcast message. This has a twofold benefit: First, it means that network traffic
is kept low, since only one message has to be sent over the line, regardless of the
number of clients. Second, it allows each computer to receive the message at the
same time. It has been pointed out in Section 2.4 that the CTW algorithm cannot
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prevent skewing of packet travel times as they are perceived by the node, if the
skewing is lower than the slice time (which was established as the upper bound of
possible skewing). While this is a fundamental problem, and any measurements that
try to rely on or gauge values to a precision below slice time should be taken with
a grain of salt, sending out one broadcast message allows for at least some amount
of best-effort precision compared to necessarily sequential sending to each client
individually, in that all client start at roughly the same time. “Roughly” because
there are still a plethora of factors that influence this: The packet has to traverse a
network stack, to be handed to the synchronization client and interpreted, and the
client then has to start the domain or simulation it drives. This is therefore purely
best-effort and might or might not improve results at sub-slice accuracy; the better
way will always be to reduce slice time according to the desired synchronization
precision.

For this work, two synchronization servers have been written. The original, stand-
alone one was written by Elias Weingärtner before the author started his thesis.
Additionally, the kernel module that houses the Xen synchronization client (see
Section 3.2.1) can also be used as a server.

3.2 The Synchronization Client

For this work, two clients have been written: one for driving Xen domains, and one
for the OMNeT++ discrete event scheduler. First of all, their common behavior will
be explained, before the implementation of each is described in more detail.

The task of the synchronization client is to form the interface between the synchro-
nized domains or simulations and the synchronization server. Between client and
server, communication is done via a simple protocol on top of UDP, as described
in Section 3.1. Whenever a run message is received, the client will instruct the
scheduler that drives the respective domain or simulation to run it for the specified
amount of time. It will then wait for notification that the slice was fully used up.
As soon as that happens, the client will send a fin message to the server.

3.2.1 The Xen Synchronization Client

First of all, it should be noted that the synchronization client for Xen domains
has been written as a Linux kernel module that resides in the privileged domain’s
(dom0’s) kernel. The reason for this are efficiency and speed considerations: When
the server sends out the run message, it will enter the Xen machine via the network
adapter, and then the network stack inside dom0 . If the synchronization client was
implemented in user space, as depicted in Figure 3.2(a), a received run packet would
then traverse the stack, and finally be handed over to the client, which has opened a
socket on the respective port that the packet was sent to. This is the first necessary
context switch. Then, the client has to interpret the contents of the message, and
afterward instruct Xen to run whichever domain is synchronized on the machine.
This instruction is done via a hypercall (for the concept of hypercalls, see Section
2.5.2), and is only possible from kernel context. This means that another two context
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(a) Sync client in user space (b) Sync client in kernel space

Figure 3.2 Placing the synchronization client into kernel space noticeably reduces
the number of context switches.

switches are necessary for entering Xen’s context: From user-space to kernel space
(2), and from there on to Xen’s space (3). Also, when the synchronized domain has
run its assigned time, Xen must notify the client. This is done via an interrupt, and
interrupt handlers have to reside in kernel context. So again, two context switches
would be necessary here: from Xen to kernel context and the interrupt handler
(4) and onward to the user-space client (5). Finally, to inform the synchronization
server that the assigned time has been used up, a packet has to be sent, which
requires another context switch back to kernel context and the network stack (6).
Implementation of the synchronization client as kernel module therefore saves four
context switches (see Figure 3.2(b)). In this case, only two context switches are
necessary: from kernel context to Xen when the scheduler has to be instructed (1),
and back to the interrupt handler when the domain has run its assigned time (2).
While the exact effect of context switching on the performance is hard to measure,
since it depends on many factors (architecture, CPU speed, CPU cache size, just
to name some), they are generally expensive operations. Saving context switches
therefore improves performance.

The fact that the client resides in kernel space makes a few things a bit different to
handle. Most notably, everything surrounding sockets, such as their creation and
sending and receiving messages, is different. This is because the functions socket(),
sendto(), etc. are syscalls that cannot be issued from the kernel. Rather, the
generic back-end functions have to be used. Also, since standard C libraries are
not available, some functions have to be copied over and statically linked into the
module.

When the kernel module is loaded, it will first open a socket for communication
with the synchronization server. Then, it will send a hypercall to Xen to set do-
mains that it will control into synchronized state. Instead of creating a totally new
hypercall for this, it rather makes use of the generic hypercall DOMCTL (domain
control). DOMCTL is a very diverse hypercall which can execute a plethora of dif-
ferent commands based on a cmd option that is handed over with the other hypercall
options. Two commands, XEN_DOMCTL_set_synced and XEN_DOMCTL_get_synced,
were added. After this is done, the kernel module will register an interrupt handler.
Finally, it will start a kernel thread that contains the actual client code. From there,
it will then send a reg message to the server, and wait until it receives the first run
permission.
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Whenever it receives one, it will use another hypercall to interface with the sched-
uler. Again, the DOMCTL hypercall was reused, but in this case, instead of adding
another command, an already existing one was expanded for our purposes: HY-

PERCALL_domctl(scheduler_op) originally enabled the privileged domain to set
and adjust scheduling options for all domains. For the synchronized case, this was
changed so that a call to this will not only set these scheduling options, but also
signal a new slice. Besides the fact that this minimally invasive change to Xen will
probably make it easier to maintain the code for later releases,1 this has the benefi-
cial side effect that every slice can be of different length compared to its predecessors
and successors, if desired. After issuing the hypercall, it will yield the CPU, so that
the synchronized domain can start immediately.

After Xen has scheduled the domain for the specified time, the scheduler will send
an interrupt to dom0 (see Section 3.4.1.2 for more details). The interrupt handler
that was registered will be called, and trigger the sending of a fin message to the
synchronization server. Then it will wait again for the next run permission. This
loop will continue infinitely, or until the kernel module is unloaded. In this case, the
exit function will close the kernel thread and the socket, unregister the IRQ handler,
and use the XEN_DOMCTL_set_synced hypercall to reset the sync flag, which releases
the domain from synchronization.

3.2.2 The OMNeT++ Synchronization Client

The modular design of OMNeT++ allows the user not only to create new nodes
with custom behavior for simulation, but it also gives the opportunity to implement
and use new basic classes. To create the synchronization client, a new scheduler was
written. In contrast to the Xen side, synchronization client and scheduler form a
unit; the scheduler performs all the tasks of the client in its scheduling functions. Like
all other components in OMNeT++, it is implemented by creating a new class (in
this case named cSyncScheduler) as a subtype of a more general, predefined class
(cScheduler). Similar to how the Xen scheduling subsystem works, OMNeT++
will call the chosen scheduler’s functions at the appropriate times.2 For example,
at the beginning of the simulation, (i.e. when OMNeT++ is started), the method
startRun() is called. Here, the tunnel for the external client (see Section 3.3 on
the functional coupling via the emulator) is initialized, and the simulation instance
is registered at the synchronization server.

After Initialization, OMNeT++ will repeatedly call the main scheduling function
getNextEvent(). As the name suggests, it is the scheduler’s task to hand over the
next event that is to be processed. In the case of the cSyncScheduler, it will block

1The main reason that adding a new hypercall might break in later releases is that every
hypercall is identified by a unique number that correlates to an offset in Xen’s hypercall vector.
For example, when the DOMCTL hypercall is to be executed, the system notifies Xen that it wants
it to execute hypercall no. 36. If a new hypercall is added, it has to be uniquely identified with a
number. If in a later version of Xen, a hypercall was added by the developers that uses the same
number, this conflict had to be resolved manually.

2The only difference is that OMNeT++ calls a method of a class, while this object-oriented
concept is not available in C, in which Xen is programmed. Xen uses function pointers set in a
globally declared struct to achieve the same behavior, a typical approach in C for this sort of
functionality.
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Figure 3.3 The parts of the synchronized network emulation setup that constitute
the emulator.

and wait for a run message from the synchronization server. Once it receives it, it
will check whether the next event’s scheduled processing time in the event queue is
earlier than the barrier set by the run permission. If so, it will return this event
to OMNeT++. The simulator will process it and ask the scheduler for the next
event. This will continue until the next event’s scheduled processing time is later
than the barrier. The scheduler will then send a fin message to the synchronization
server and wait for the next run permission, blocking the simulation again until this
happens. This cycle will repeat ad infinitum, or until the user stops the synchronized
network emulation. If the simulator is closed, it will call the function endRun(), in
which the scheduler sends an unreg message to the server to notify it that it is
leaving the synchronization.

3.3 The Emulator

The emulator performs the tasks that facilitate the functional coupling between
simulation and Xen domain, i.e. it converts Ethernet frames sent out by the domain’s
network driver into simulations messages and vice versa. It comprises several parts,
which have been marked in Figure 3.3 and will be described in this section: a bridged
TAP device, a tunnel, and a message translator.

On the Xen side, acquiring the Ethernet frames sent by the synchronized domain is
done via a TAP device. Whenever an unprivileged domain, named “domU” in short,
is started in Xen, and it has been defined to have one or more Ethernet devices,
a corresponding so-called “virtual interface” (vif) is created within the privileged
domain dom0. All traffic to and from the domU is also visible on this device; in fact,
it is a vital part of the interface setup in Xen. It is bridged with the actual physical
network device in dom0 to facilitate connection to the outside world.

For emulation, this is changed so that the virtual interface is bridged with a TAP
device. TAP devices [45] are front ends to a virtual network driver that allows to tap
into (hence the name) the communication on Ethernet frame level. The TAP driver
creates a special device file from which the frames can be read, or to which frames
can be written to insert them. The emulator uses this for communication with the
synchronized domain. The frames are read from the device and encapsulated into a
UDP packet, so they can be tunneled to a different host; in our case, this is the host
the simulation is running on. This is done because the IP address of a simulated
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node is not known to the physical network, and packets addressed to it would not
be routable. In contrast, the machine that runs the simulation has an IP address
that packets can be sent to. Conversely, UDP packets that are received over the
tunnel are decapsulated, and the Ethernet frames inside the packet are inserted into
the TAP device, and therefore bridged to the virtual interface and by extension the
synchronized domain.

The simulator side of the emulator is more complex, since all the actual translation
takes place there. When a packet is received over the tunnel, it is decoded step by
step and transformed into an OMNeT++ message. The conceptual design of an
OMNeT++ message in the INET framework is similar to that of a real packet or
Ethernet frame: A packet consists of a header and a payload, and the latter may
contain another packet type, again with a header and payload. Just like TCP is
encapsulated into IP when it traverses a TCP/IP network stack, an INET framework
message consists of several types encapsulated into each other: A message of type
EthernetIIFrame will contain a pointer to an encapsulated message, typically of
the type IPDatagram or ARPPacket, and so on. While the INET framework ships
with some serializers to do this translation work, in practice they are incomplete
and unsuitable for our tasks; for example, ping data payload that an ICMP echo

request packet is padded with is silently discarded. This means that an echo reply

sent by a node inside the simulation cannot return this data payload, which is a
violation of the respective RFC [57] and can lead to problems, such as the original
sender not properly recognizing the echo reply. Consequently, a new translator
was implemented by the author.

After the translation has finished, the message has to be inserted into the simulation.
To facilitate this, every synchronized domain is represented in the simulation by a
node of the newly created class cExtHost. Whenever a packet is translated into an
OMNeT++ message, it is inserted at this node, and from there handled exactly the
same as all other INET framework messages. In other words, to simulated nodes
in the network, cExtHost does not behave any different from a fully simulated one.
When a message is received by the cExtHost node, it will be handed over to the
emulator for translation in the opposite direction, from message to packet. The
work for this direction of translation was already done a few years ago by another
student in [59] and adopted. For the most part, it could be used in the state it was
in. However, support for ping data payload was again missing and added.

At this point in time, the emulator can translate the protocols ARP, UDP (and
consequently IP), ICMP and Ethernet (in the common format of version 2). The
interface is extendable and should accommodate additional protocols without any
problems.

3.4 Modifications to Xen

For this thesis, Xen has been modified in two fields: the scheduler and the time-
keeping. These changes comprise the main part of the work, both in complexity and
amount of time invested. They can be roughly split into two areas. Changes to the
scheduler allow to precisely start and stop the synchronized domain, in fulfillment
of requirement 1. The sEDF scheduler was modified for the special treatment of
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synchronized domains. To improve scheduling performance, the main scheduling
loop that wraps the sEDF scheduler was also modified. Changes to the timekeeping
allow to mask the passing of time from a synchronized domain, to the point where
it will not notice time has passed while it was descheduled, fulfilling requirement 2.
How this is done depends on whether the domain is para- or hardware virtualized,
and whether counters or timers are modified.

3.4.1 Modifications to the sEDF Scheduler

As described in Section 2.6, the sEDF scheduler is an earliest deadline first scheduler
that does its work by scheduling the virtual CPUs (VCPUs) that belong to a domain.
It uses four queues per physical CPU (PCPU): a wait- and a runqueue, as well as
two extra queues. A VCPU will be assigned to a PCPU and never migrate to
another (save for manual intervention), and switch between run- and waitqueue
there, depending on whether it still has time to run during its slice, or is done and
waiting for its next period to begin. If VCPUs are “extra-aware”, they are also put
on the utility extra queue. If the run queue is empty (i.e. all runtime demands have
been met for the time being), sEDF will take a VCPU from the utility queue, so
that the PCPU does not idle.

To understand the changes to the scheduler, and their reasons, remember the first
requirement of the Xen implementation:

1. The Operating System must be stoppable and startable at any point in time,
and run for precisely the amount of time assigned.

To synchronize an operating system, it is therefore important to make sure that it
will never run during this extra time. That means that its domain’s VCPU(s) must
be removed from the utility queue. Fortunately, this is very easy to ensure, since the
sEDF scheduler already comes with an option to make VCPUs extra-aware or not.

It is also important to make sure that the VCPU of the synchronized domain is placed
outside the normal switching between run- and waitqueue. Normal domains fulfill the
constraints laid out in Section 2.6: They have a constant slice and relative deadline,
and are constantly rescheduled when their deadline is reached. In contrast, in this
implementation, there is no immediate rescheduling when a synchronized domain has
finished its slice. Rescheduling occurs only when the synchronization server gives
the instruction to do so. Therefore, this implementation introduces another queue
which is called the “syncqueue”. VCPUs of domains that are synchronized are put
onto this queue, which functions as an alternative to the waitqueue. They are kept
on this queue until the synchronization server assigns a new time slice. Then, the
slice is set to the time that was assigned, and the VCPU is put onto the runqueue.
After it has run its course, instead of onto the waitqueue, it is put back onto the
syncqueue.

This has two advantages: First, synchronized domains are kept outside of the scope
of the scheduler while they are dormant, which means that they cannot influence
the actions of the scheduler during this time. This was done so that the changes to
the scheduler are kept small, which hopefully will mean that the changes to Xen will
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be easily portable to newer versions that will be released in the future. Generally,
the code was written in a way that tried to extend Xen in a way that changed as
little of the already-existing code, and rather added new code specifically designed
for synchronized domains only. Second, keeping the synchronized domains and their
VCPU aside in a separate queue allows for fast checking and finding of them. If
a system had many domains running, but only few of them were synchronized, a
separate queue will allow to traverse the synchronized VCPUs much faster than
checking every single one on the waitqueue. In retrospect, the speed advantage is
probably negligible, but it allowed for a convenient partition into synchronized and
unsynchronized domains. In addition, it fit into the multi-queue concept of the sEDF
scheduler.

3.4.1.1 Misattribution of Runtime

Xen gives the administrator the choice between several scheduling algorithms. As
has been stated numerous times by now, this work adopted the sEDF scheduler.
This choice is implemented by having a main scheduling loop that contains fixed
code, and that calls the chosen scheduler only when the actual scheduling decision
(which VCPU, for how long) has to be made; all the other work (for example,
context switches, and maintaining the timekeeping system) is done at appropriate
times inside the main loop, but before control is given to the chosen VCPU.

One of the main problems of this main scheduling loop, and that the sEDF sched-
uler therefore inherits from it, is that it attributes time spent in the scheduler to
the VCPU chosen for scheduling. So, if scheduling decisions and all the additional
upkeeping inside the scheduling system take 2µs, the domain will run 2µs shorter
than the time it is scheduled for. Under normal circumstances, this effect is negli-
gible, since the scheduler will rarely run a domain for less than 500µs; besides, the
effects will affect all domains more or less the same. Consequently, this inaccuracy
was ignored by the Xen developers. However, in our cases, slices may be as small as
10µs, which exacerbates the effect, and requirement number 1 explicitly states that
domains are supposed to be run for exactly specified amounts of time. Therefore,
the scheduler must be made aware of the time it consumes itself.

Here lies a fundamental problem. It is impossible to ever make the scheduler 100%
accurate in measuring this time. The reason is illustrated in Figure 3.4. The behav-
ior of the original scheduler is depicted in Figure 3.4(a): It takes a timestamp tin at
the time it enters the main scheduling function. It then calls the sEDF scheduler to
reach a decision on which VCPU to schedule, and for how long (ts; not depicted in
the figure). Then, it will do various administrative work connected to this VCPU.
Finally, it will set a timer to tin + ts, which will give control back to the scheduler;
after returning there, it will attribute ts as time the VCPU ran, which is obviously
inaccurate on two accounts. First, because the time spent in the scheduler is at-
tributed to the scheduled domain (the red area). Second, because the time between
the scheduler interrupt occured and tin was taken is attributed to the preceding
domain (the yellow) area. However, when trying to remedy the misattribution by
introducing another value tout (see Figure 3.4), a problem occurs: At best, the timer
can be set to tout + ts. This means that the timestamp has to have been made before
the instruction to set the timer, which in turn has to be made before the final con-
text switch between scheduler and VCPU occurs. Therefore, there is always a small
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(a) Before: Time in the scheduler attributed to the following domain.

(b) After: Time in the scheduler not attributed to any domain.

Figure 3.4 Misattribution of runtime. Note that the figure is not to scale.

amount of time that will be incorrectly attributed to the scheduled VCPUs due to
the context switches. The solution to add a timestamp tout to the already existing
tin, however, alleviates the problem by a great amount. Note that the two figures
are not to scale. In reality, the time spent on the context switches is much shorter in
relation to the time spent in the scheduler. It has been exaggerated here for reasons
of clearness in the figure. In the source code, the two timestamps are saved in the
C structure struct vcpu, as sched_start and sched_end, respectively. Those two
variables play an important role in the timekeeping changes that are described in
the next section.

Several changes in the sEDF scheduler stem from this change. Most important,
whenever the sEDF is called from the main scheduling loop, it will update its in-
formation, so it can keep track of which VCPU has already run for how long. It
will not simply assume that the time it assigned to the VCPU is the time it actu-
ally ran, since there are several situations under which the two are not the same
(e.g. Interrupts occurred, or the domain blocked and yielded the PCPU). For these
purposes, sEDF calculates the difference between the previous time it was called
(which is equal to tin), and the current time. This had obviously to be changed, too.
While the above change to the timer that recalls the main scheduling loop makes the
VCPU run longer, it has to be ensured that the extra time gained this way is not
deducted from the VCPU’s time slice. Otherwise it will be punished by the sEDF
next time around for seemingly running too long. The change is, similar to above,
a switch of tout for tin.

One final thing that has to be kept in mind is that timers are not 100% accurate.
If a domain is scheduled for 100µs of time, it is not uncommon to see it return to
the scheduler shortly before or after (on our test computers, it was generally in the
sub-µs range, but could sometimes peak at 3-4µs difference). Therefore, some self-
adjustment was added. If the scheduler returned too early, the VCPU is generally
simply rescheduled in the normal way for the remaining time. However, if it had
run too long, the scheduler takes note of it and will reduce the next slice by the
appropriate amount. Furthermore, if the VCPU had returned too early, but barely
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so (less than 1µs too early), it is not rescheduled; rather, the lost time is added as
a bonus next time it is scheduled. The reason for this is two-fold. On the one hand,
since tout is not exactly the time the VCPU starts running again, there is always a
small error introduced (as has been already explained). For slices of a size this tiny,
the error would become rather noticeable; therefore, it is preferable to add it to the
next slice to reduce the overall error. On the other hand, timers in Xen with expiry
dates very close to the current time have the tendency to fire immediately. In this
case, the following happens:

1. The rescheduling timer is set.

2. Immediately, it fires, and the main scheduling loop is called again.

3. It in turn invokes the sEDF.

4. A very small amount of time has passed since the previous invocation; this
is subtracted from the scheduled VCPU’s time slice. The VCPU is chosen to
continue to run.

5. The main scheduling loop sets the timer.

6. The cycle continues from step 2, until all the VCPU’s remaining time has been
used up.

In this case, the VCPU loses all its remaining time, does not run at all, and the
system produces meaningless scheduler overhead. Since this obviously is undesirable,
the above solution was chosen.

3.4.1.2 The sEDF Interface

When the domain has used up its assigned slice, the scheduler needs to signal this,
so that Xen can inform the synchronization client in dom0, which in turn will relay
this information to the synchronization server. Since the knowledge about when this
happens resides in the sEDF, it will signal this to the main scheduling loop. The
design choice was again to make this signaling as simple, nonintrusive and efficient
as possible. Therefore, inside the C structure struct domain, which already existed
and contains domain management variables, a counter was added that is initialized
to 0. When a synchronized domain has finished its assigned time, the counter is
incremented and therefore odd. The main scheduling loop will always check the
counter for oddness, and if the case, increment it again (to make it even), and
send out a so-called “virtual interrupt” (see Section 3.4.3) to the dom0, in which
the synchronization client resides. From the view point of a Xen domain, a virtual
interrupt is no different from normal interrupts, i.e. the synchronization client has
registered an interrupt handler, and therefore immediately is noticed whenever a
domain is done.

Conversely, the synchronization client, whenever it receives instructions from the
synchronization server to let a domain run for a specified amount of time, has to
have a way to interface with the sEDF. For this end, a hypercall is used. For details,
see Section 3.2.1.
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3.4.2 Time Warping: Modifications to the Timekeeping Subsys-
tem

It has been explained in Section 2.7 that every x86 system makes sure that it can
keep track of the passing of time. For synchronization that is truly transparent
to the synchronized OS, the time information that can be received by it must be
changed to fulfill requirement 2:

2. The Operating System must not notice that, during the time it did not run,
any time passed. In other words, although it will run only intermittently, it
must seem to it as if time passed continuously without any gaps.

Also in Section 2.7, it was explained how timekeeping hardware comes in the form
of either counters (the real time clock being a special form of a counter) or pro-
grammable timers. To achieve what will be called time warping from here on, i.e.
proper modification of the timekeeping information, those two types have to be dealt
with in different manners.

Counters must not increment while the domain is not running. This means that
in contrast to the normal way they are handled by just replicating the values of
the actual hardware counters, for synchronized domains, a special value ∆t has to
be calculated that is the cumulated amount of the time the domain has not run
since it was put into synchronized state (therefore the “big delta”). Then, whenever
information about these counters is relayed to the domain, ∆t is subtracted from
the actual value.

Timers must, on the one hand, not expire while the domain is not running. This can
be ensured by stopping all of them whenever the domain is descheduled. On the other
hand, their expiry date must also be adjusted. If they were simply stopped when
a domain was descheduled, and then restarted when it was scheduled again, they
would expire at the wrong time, with a high chance to do so at the very beginning
of the time slice. Therefore, every time a synchronized domain is scheduled, a value
δt has to be added to the expiry date of all timers, where δt is the time since the
domain has been last run, i.e. since it was descheduled (the “small delta”).

To calculate ∆t and δt, the timestamps sched_start and sched_end are saved
during scheduling. These are the variable names used in the Xen implementation for
the two timestamps tin and tout, as defined in Section 3.4.1.1. In addition, the main
scheduling loop saves a third timestamp, sync_time_last_run. While it contains
the same value as sched_start, it is saved in a different location and serves a
different purpose: The first two values are saved with the VCPU that is going
to be scheduled, while the third one is saved with the VCPU that has just been
descheduled. This makes it possible to calculate the time since a domain has last
been run as the difference sched_end−sync_time_last_run, which is the definition
of δt. ∆t is updated every time a domain is chosen for scheduling. Whenever this
happens, δt is added to ∆t. Often during the implementation, two more values are
used for time warping: sync_total_run is the counterpart to ∆t in that it contains
the cumulated time the domain has run (in contrast to the time it has not run),
and sync_original_start_time is a timestamp taken at the time the domain was
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put into synchronized state. Note that sync_total_run is directly calculated from
the values of sched_start and sched_end inside the scheduler: When a domain is
descheduled, sync_total_run is incremented by sched_end− sched_start, where
sched_end still contains the old value, but sched_start already the new.

In theory, time warping is therefore hardly a complicated task. The main prob-
lems are that the approach to time warping is completely different between para-
and hardware virtualized domains, since their timekeeping architecture is likewise
dissimilar. In addition, the hardware virtualized case requires full emulation of all
hardware counters and timers, which work very differently internally. Finally, it is
important to base all the calculations on as few timestamps as possible. Whenever
a timer is warped, the current time value, in short “now” from here on, is important
to know. Nevertheless, it is better to acquire one timestamp for “now” first and
then do all warping with this value, even if there are many timers to be warped.
Even though every warping takes a few nanoseconds, and therefore “now” is actually
already in the past, acquiring a new timestamp for every counter would only achieve
two things: First, it would increase the overhead, since every call to acquire a new
timestamp costs time. Second, it would mean that timers would, even if very slowly,
start drifting from each other.

Take as an example two timers that both fire every second. They both had 0.5
seconds left when the domain was descheduled. Before the first one is warped, a
timestamp is acquired, and the calculations are based on it. If for the warping of
the second, a new timestamp is obtained, the second timer will, after warping, be
scheduled to fire slightly after the first. This inaccuracy will accumulate, to the point
where the two timers will noticeably drift apart. This drifting must be prevented,
because it would be an artifact introduced by the synchronization. This is the
reason why all time warping is based on a common “now” timestamp, and why most
of the calculations are based on few values, typically, sync_original_start_time,
sync_total_run and expiry values based on synchronized time.

3.4.2.1 Paravirtualization

One of the main concepts of paravirtualization is playing on the strengths of knowing
that the domain is virtualized. A paravirtualized Linux kernel for Xen therefore
foregoes a complete timekeeping subsystem and rather acquires time information
from the hypervisor. For system time, this means that it does not try to read
values from hardware counters and calibrate them to find out how many increments
constitute a nanosecond. It rather relies on Xen to deliver this information. Xen
does this by periodically writing several values into a memory page shared between
hypervisor and domain: a current timestamp of the form “nanoseconds since boot
time” (system_time), the value of the time stamp counter at the same time, and a
set of two scale/shift values that contain TSC calibration information. The domain,
on the other hand, will be able to read those and copy them to an internal C struct.
Whenever it needs to know the current system time, all it has to do is read the current
TSC value, calculate the difference between it and the TSC timestamp value, use the
calibration information to find out how many nanoseconds the difference constitutes,
and add this value to the system_time timestamp. This relieves it from most of the
timekeeping overhead.
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As a side effect, it also makes it easy to warp the value according to require-
ment 2. Whenever a domain is scheduled, Xen will check whether one of the
periodic updates to the time information has happened, and then copy the new
values to the shared memory page. In the synchronized case, the nanosecond
value is changed accordingly. If an update has taken place, system_time is set to
sync_original_start_time + sync_total_run. This alone does not suffice, how-
ever. Since the structure also contains a TSC timestamp, the domain would be able
to notice any time it has not been run since the update when it calculates its time
values. The TSC timestamp itself should stay untouched, however, because other-
wise the scale/shift values might have to be updated too, and recalibrating them
is a comparatively time-consuming progress. Therefore, the difference between the
current time and the timestamp is subtracted from the new values of system_time
instead. If, on the other hand, no update has taken place, then the value has al-
ready been warped earlier per the above explanation, so only the additional time
the domain has not run has to be subtracted. All that is to do is therefore subtract
δt from system_time.

Periodic timers are implemented in paravirtualization by handing them over to the
hypervisor. For example, the periodic Linux “tick” that generally happens at a rate
of 100–1000 Hz3 is actually handled by Xen at the request of the domain’s kernel.
Whenever it expires, an event is sent to the kernel by the hypervisor. All timers
that belong to a certain VCPU are accessible via Xen’s standard management struc-
ture struct vcpu. Furthermore, the standard Xen implementation already stops
the timers when a domain is descheduled, and restarts them when it is resched-
uled. Consequently, all that is to left do is to warp them accordingly before their
reactivation by adding δt.

3.4.2.2 Hardware Virtualization

In the case of Hardware virtualization, the timekeeping architecture works very
different from the paravirtualized way. First and foremost, the guest cannot take
advantage of Xen’s timekeeping, and rather has to establish its own. For this reason,
all hardware timers are emulated in the Xen HVM code. The only exception is the
time stamp counter. Since this counter is part of the CPU, both Intel-VT and
AMD-V provide ways to virtualize it. This is done by allowing the virtual machine
monitor to set an offset that is added to or subtracted from the actual value whenever
a domain executes the rdtsc (read TSC) CPU instruction.

Xen’s timer emulation code is peculiar compared to most other parts in that it is
still under heavy development, and has several rough edges. The most obvious one
is that the code is less organized in a centralized, reusable manner. For example, at
this point in time, PIT, RTC, and local APIC timers share some code in the form of
a “virtual platform timer”, while this is not the case for the ACPI PMT and HPET.
Furthermore, the virtual platform timers are driven by the TSC, which means that
the timekeeping that Xen does for itself to ensure monotonic and precise time is
not put to use, and that timers may show nonmonotonic or imprecise behavior in

3Newer, so-called “tickless” kernels do not have a periodic timer any more that ticks at a fixed
rate. However, the latest paravirtualized Linux kernel available for Xen at the time of writing is
2.6.18.8, which still works in the old, standard way.
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SMP systems. This means that the changes for HVM timekeeping are relatively
complicated and diverse.

As mentioned above, processors that support x86 hardware virtualization already
provide a way to virtualize the TSC. Xen makes use of this by setting a TSC offset
for every HVM guest domain that is running. For time warping, this means that the
approach is very similar to the warping of the system time for paravirtualized guests.
However, the time is not measured in nanoseconds, but in TSC ticks. Therefore,
if a HVM domain is synchronized, at the time it is put into synchronized state,
not only sync_original_start_time is saved, but also, for every VCPU, a TSC
timestamp named sync_original_start_tsc. Whenever a domain is scheduled,
a TSC value is calculated from this TSC snapshot and sync_total_run, which is
converted from nanoseconds to TSC ticks. The difference between this value and
the current actual TSC value is then given as an offset to the Intel-VT or AMD-V
virtualization architecture.

Similar to the paravirtualized case, Xen implements timers that are set by the guest
in the emulated timer hardware as timers in its main timer queue. However, in
contrast to the paravirtualized case, it does not stop all of these when the domain
is descheduled. Time sources that use the virtual platform timer framework will be
generally stopped, but Xen will keep note of missed ticks, i.e. expires that happened
while the domain was descheduled. There are several ways that Xen will cope with
these, depending on a per-domain setting that can be set by the user at domain cre-
ation time, including ignoring them or delivering them, or changing the behavior of
the timer, which can lead to them not being stopped any more during descheduling.
Time sources that are not part of the virtual platform timer will never be stopped.
Finally, which timers are actually used and which one are idle depends on the oper-
ating system that is being virtualized, and which of the emulated timers it decides
to make use of.

For proper time warping, all timers have to be stopped whenever the domain is
descheduled, not only the virtual platform ones. However, there has to be a way
to keep track of which timers are actually used by a domain. First of all, each and
every timer that is part of the HVM timekeeping architecture was therefore fit with
an additional variable: a flag named active. Whenever a domain is descheduled,
every timer is checked. If it is active at this point in time, active is set to 1, and
the timer is stopped. Otherwise, active is set to 0. This allows to recognize which
timers have to be restarted when the domain is rescheduled again, so unused timers
do not suddenly start running and confuse the domain when they signal their expiry.

In addition, all timers keep a time value in synchronized time that is updated when
they expire and their handling function is called. For virtual platform timers, this
value contains the time they expired, while for the other timers, it contains the time
they will next fire at. (This difference stems from which time variables are available
at which point during the execution of the various functions). In both cases, this
gives the time warping the necessary information to modify the timer expiry values
correctly. All that is to be done is use the time value of current real time, current
time as it appears to the synchronized domain, and either the last time the timer
fired and the timer period (virtual platform timers) or the next time it will fire
(non-virtual-platform timers). The calculation is therefore:

now + period− (sync_total_run− last_fired)
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or:

now + (fire_at− sync_total_run)

This warping is done when the synchronized domain is rescheduled, right before
the timers are reactivated again. Warping and reactivation will be done only if the
active flag denotes that a timer was active when the domain was descheduled, so as
not to introduce rogue timers that have no use and are not expected by the domain.

A special case is the real time clock: The periodic timer that can be programmed is
part of the virtual platform timers and handled by their time warping. However, the
RTC emulation also contains two more timers. These emulate the time behavior of a
hardware RTC. The first timer fires every second, and increases the time saved in the
emulated RTC by 1 second. To correctly emulate the classic Motorola MC146818
RTC chip, it also introduces a second timer. This RTC chip was only readable at
certain times; when an update of the values was in progress (once every second),
reading produced undefined values. Therefore, an additional flag called “update in
progress” was used to signal when it was safe to read correct values from the RTC.
This safe window was 244 microseconds long. The second timer in the emulation is
used to correctly emulate the “update in progress” flag behavior.

For normal (unsynchronized) domains, these timers are never stopped. The RTC al-
ways reflects the real time this way. For synchronization, this has to be changed; both
timers are warped according to the above system for non-virtual-platform timers.
In addition, the update to the RTC time values is not left to the timer that fires
each second. To make extra sure that no time drifting can occur from cumulated
precision errors stemming from the constant stopping, warping and restarting of the
timers, the time value that the RTC signals is synchronized against the value of
sync_total_run. This way, it will always produce time information that is exact,
even over long periods of time, without any fear of it drifting off.

3.4.3 Miscellaneous Changes to Xen and the dom0 Kernel

Communication between the synchronization client and Xen relies on hypercalls
and interrupt handlers, as has been described in Section 3.2.1. The client uses two
different hypercalls to either notify the start or end of synchronization of a domain,
or to relay run permission information. These changes to the hypercalls have already
been described in detail in that Section, so it will be skipped here. For the other
direction of communication, Xen uses an interrupt to notify the client of domains
that have finished their assigned run time, and reached the time barrier.

This interrupt is one of Xen’s so-called virtual interrupts. From the hypervisor’s
angle, a virtual interrupt is similar to a signal that is sent to a specific domain.
To the domain, it will appear as a standard hardware interrupt. For this work,
a new virtual IRQ with the number 13 and the symbolic name VIRQ_SYNC_DONE

was defined in Xen. Signaling the synchronization client from Xen is therefore as
simple as registering an interrupt handler in dom0, and raising the interrupt in Xen
whenever signaling is necessary.

Finally, a few more cosmetic changes were applied to the paravirtualized Linux ker-
nel that is used for the privileged domain dom0 and paravirtualized unprivileged
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domains. Their role was to make development easier and provide a cleaner interface
for possible future development. First, since the domctl hypercall was not called
from kernel context before our changes, there was no function to encapsulate the
more generic call syntax. This is in contrast to other hypercalls that were already
used in the kernel, and that received such a cleaner way of calling to the hypervisor.
Consequently, a function HYPERVISOR_domctl() was added to the interface to ab-
stract from the more generic _hypercall1(). Second, a C preprocessor definition
was added to give the name VIRQ_SYNC_DONE to the interrupt no. 13 in the dom0
too, so that it is clear in the code of the interrupt handler which interrupt it has
been registered to. Furthermore this abstraction ensures that if at some point in the
future, the interrupt number has to be changed for compatibility reasons, it has to
be changed only at one central location.
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4
Evaluation

To analyze the proper functioning of the implemented synchronization system, sev-
eral tests have been performed. The evaluation analyzes the following fields and
tries to answer the following questions:

• Timing accuracy: Do results acquired under synchronized network emulation
closely resemble real-world results?

• Overhead: How does synchronization to small time slices influence the overall
run time of a synchronized network emulation setup?

• Performance: What are the effects of synchronization on performance, as wit-
nessed by the synchronized domain itself?

The evaluation setup consisted of two computers. Computer A was an AMD Athlon
64 3800+ with a speed of 2.4 GHz, with 512 KB cache, 1024 MB RAM, and a 1 Gbit
network adapter. It was used in all of the tests, single-machine as well as multi-
machine. Computer B was an Intel Pentium 4 (with hyperthreading) at 3 GHz, with
2048 KB cache, 1024 MB RAM, and a 1 GBit network adapter. It was only used in
multi-machine tests.

4.1 Timing Accuracy

To analyze timing accuracy, an evaluation method had to be devised to measure the
timing behavior at very small scales. An easy way to acquire such numbers is the
standard ping utility. It sends an ICMP echo request to another machine, which
will immediately be answered by an echo reply. The ping program then measures
the round-trip time (RTT), which is the time from the sending of the request to the
receiving of the echo reply. The standard Linux ping utility will provide numbers
down to microsecond resolution if the overall RTT is less than 1 millisecond.



46 4. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

co
un

t

ping RTT [ms]

(a) RTTs for two Linux PCs
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(b) RTTs between a paravirtualized Linux do-
main and an OMNeT++ simulation
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(c) RTTs between a hardware virtualized
Linux domain and an OMNeT++ simulation
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Figure 4.1 ICMP echo (ping) round-trip times under different circumstances. His-
tograms of 3500 echo requests/replies each.

The results of the accuracy test are shown in Figure 4.1. To produce comparison
data, both computer A and computer B were booted into an Ubuntu Linux. Then,
A pinged B 3500 times. For this and all other test setups, both computers were
connected directly with an Ethernet cable and no other network hardware in be-
tween, such as hubs or switches. Figure 4.1(a) shows that the RTTs are for the most
part between 50µs and 150µs, but there are some higher results, especially around
400µs.

In contrast, Figure 4.2 shows the results of a real system connected to an OMNeT++
simulation via the emulator, but without synchronization between the two. The
simulation was overloaded to show a scenario that this work tries to remedy. If the
simulation had been able to cope with the incoming packets from the real system,
the results would have been similar to Figure 4.1(a). However, in the overloaded
case, results such as the one shown are inevitable: If the simulation is consistently
slower than real time it will fall behind the real system’s time base more and more,
which in turn steadily increases RTTs. In this case, the ping output showed every
ping taking roughly 10ms longer than the preceding one, which leads to the graph in
Figure 4.2(a) if the pings are plotted on the x-axis, and a histogram of the form shown
in Figure 4.2(b), for comparison with the Figures from 4.1. The results are obviously
useless for any further analysis that even remotely relies on timing information. In
this case, if there had been any TCP connection, for example, the real system would
have eventually witnessed packet timeouts because the simulation took longer and
longer to produce replies.
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Figure 4.2 ICMP echo (ping) round-trip times against an overloaded simulation.

Figures 4.1(b) and 4.1(c) show the results that were received using the implemented
synchronizer. In both cases, computer A was running the modified Xen and a
domain that was synchronized to an OMNeT++ simulation which was running on
computer B. The slice size was set to 100µs. First, a paravirtualized Linux was run
as synchronized domain. The results in Figure 4.1(b) show that almost all of the
RTTs fall in an interval between 120µs and 220µs. Note that this corresponds with
the chosen slice size. Again, there are some higher results. Note that there is a small
“tail” that extends for about another time slice up to 320µs, and very few higher
results (again around 400µs). What might be surprising at first is that there also
are results that are lower than 120µs, down to RTT numbers that are actually lower
than in the real-world case. This might be explained by packets that are sent out by
the synchronized domain just before its assigned time slice ended. The packet then
travels over the Ethernet wire while the domain is waiting for the next time slice.
This means that this time is not accounted for in the RTT calculations. Likewise, the
aforementioned “tail” might be explained by packets sent out at the very beginning
of a slice. It then can take three time slices for the traveling alone: The packet is
sent out by the synchronized operating system during the first time slice. It is then
received, processed and the reply sent out by the simulation during the second time
slice, and not received by the originating domain until the third time slice.

The results acquired from synchronizing a hardware virtualized Linux domain show
a similar cumulation of results in the interval between 200µs and 300µs, if not
as massively as in the paravirtualized case. There are some faster RTTs that are
bounded by the size of another slice, i.e. between 100µs and 200µs, and again a
tail that here is slightly longer than a single slice. The slightly inferior performance
probably stems from the fact that a hardware virtualized system has to rely on fully
emulated interfaces, which means that there is an additional overhead in sending
and receiving.

Overall, the analysis shows that results are very comparable between a domain syn-
chronized to an overloaded simulation and two normal operating systems. There is
a slight drop in performance, as shown by the shifted distribution of RTT, but com-
parability is still assured, especially compared to the meaningless results acquired
without synchronization.
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Finally, there are a few things to keep in mind while interpreting these results.
First of all, the conservative time window synchronization does not give any timing
guarantees inside its slices. Second, the difference in RTT results between original
and synchronized system is constant. The analysis setup was chosen in a way to
clearly show the difference between the three cases. While for RTTs as low as in
the example, the difference might seem huge (the average RTT more than doubles
between Figures 4.1(a) and 4.1(c)), for more typical ping times in the millisecond
range, 100 to 200µs difference is much less obvious, from a relative point of view.
Figure 4.1(d) shows RTTs that were acquired by introducing a 250µs delay on the
line that connected the nodes inside the simulation (the simulated node that was
pinged, and the cExtHost node that represents that synchronized Xen domain inside
the simulation). Since it had to be passed twice (once for the ICMP echo request, and
once for the reply), the delay added up to 500µs. The results are exactly as expected,
with most RTTs between 700 and 800µs, exactly the added 500µs longer than in
the original test whose results are depicted in Figure 4.1(c). Third, note the distinct
peaks and pits in the first three Figures. They might be artifacts stemming from
the fact that while the ping utility gives results to a resolution of 1µs, the accuracy
might not be as high. This is a caveat emptor sign: It seems that the results are close
to or even slightly beyond of what granularity is feasibly achievable with this test
setup. So while the overall trend leads to the conclusion that the synchronization is
working correctly, the results should not be over-interpreted especially in respect to
cumulation and distribution in the sub-slice range because it may easily lead to a
mere reading of tea leaves.

This analysis covered the timing accuracy on a micro-scale level. It is also interesting
know whether there is any inaccuracy on a macro-scale level, i.e. whether there is
any drift between the synchronized domain’s clock and the time assigned by the
synchronizer. To test this, a paravirtualized Linux, a hardware virtualized Linux,
and a hardware virtualized Windows were run for extended periods of time (at least
5000 second each), at time slices of 100µs. There was no measurable drift even
after this amount of time. Since the tests were done by reading the current time of
day, which the operating systems provided at a resolution of 1s, it can therefore be
concluded that if there is any drift at all, it has to be below 0.02%.

4.2 Overhead

It is also interesting to know how the synchronization influences the performance
of the synchronized network emulation setup. That is, how long it takes for the
synchronized domain to finish an assigned slice. To test this, computer A was
booted into the modified Xen, and a domain was started. Then, the synchronization
server was also started on this machine, and the synchronization client synchronized
the domain with only itself, communicating with the synchronization server over
the local network loopback device. The domain was then run for 600 seconds (of
synchronized time), and it was checked how long this synchronization took in real
time. The ratio between the two times is the synchronization overhead, which itself
can be divided into scheduling overhead and messaging overhead. The former is the
overhead introduced by the synchronization client and the scheduling instructions
relayed to the Xen scheduler, and the context switches that are associated with it.
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Figure 4.3 Overhead introduced by synchronizing a Xen domain, measured in the
overhead ratio of actual wall-clock time and synchronized time.

The latter includes the work that is done by the synchronization server, and its
context switches.

The synchronization overhead is obviously dependent on the slice size because the
number of issued slices increases with decreasing slice size. This leads to more com-
munication between synchronization client and server, more scheduling instructions,
and more context switches. The test therefore was run several times, with different
slice sizes each time.

Figure 4.3 shows the overhead measured during analysis. It can be seen that for
slice sizes down to 1ms, the overhead is almost constant, at as little as 25% (HVM
Windows) to less than 6% (paravirtualized Linux). The overhead rises from here, to
about 30-50% at 100µs (the slice size that was used to produce the ping results in
the previous section). From there, it rises sharply, to more than 400% overhead at
slice sizes as small as 10µs.

The analysis was also done with two synchronized domains running on the same
computer at the same time, synchronized to each other. Here, the overhead ratio
can never fall below the factor 2, because the domains both have to run their as-
signed time slice, which already means that at least double the amount of real time
has passed. The results lead to three interesting observations: First, for large slices,
overhead doubles almost exactly for paravirtualized domains, while it increases to
more than double the amount for HVM domains. Second, for small time slices, the
paravirtualized domains “catch up”, i.e. their over ratio rises slightly more sharply
(this also is true, although to a smaller extent, of the test cases with one domain
only). This result is somewhat puzzling and might need some more analysis, espe-
cially in light of the fact that several domains synchronized to the same server are
scheduled strictly sequentially, the second only being started after the first is fin-
ished. Third, at small slice sizes, the overhead less than doubles compared to running
only one domain. This is because the synchronization client collates several domains
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and only notifies the synchronization server when all domains have consumed their
assigned time slice. This means that the messaging overhead is constant, regardless
of the number of synchronized domains on a single computer.

The analysis shows that the Xen implementation was done efficiently, creating only
minimal overhead at slice sizes of 1 ms and above (an accuracy already sufficient for
many applications), and still less than doubling the execution time for slices down
to 50µs. It also shows that it is possible to synchronize to even smaller slices, if one
is willing to put up with the increasing overhead. Also, implementation was done in
a way that allows to run several domains on the same computer, and increasing the
overhead only roughly linearly at the same time (depending on the slice size).1

4.3 CPU Performance

Synchronization can have negative results on the performance of the scheduled do-
main. This is different from overhead in that overhead measures the amount of real
time in relation to the assigned synchronized time. It does not make any statements
about the inside behavior of the synchronized domain, it is only a gauge of outside
performance. And while the first section showed that the domain’s timekeeping is
in fact fooled into only perceiving synchronized time, it is also important to analyze
how synchronization affects performance inside the domain. Synchronization is done
by frequent de- and rescheduling. At smaller slice sizes, this happens much more
often than under normal circumstances. This, however, means that the CPU has to
change what it is working on more often than normal. This leads to suboptimal us-
age of caches. Also, pipelines cannot be used to their fullest, especially since branch
prediction is useless.

To test this effect, the author used OMNeT++. This tool, while typically used as a
simulator, as in this work, can also be used to benchmark a CPU. In fact, because of
the large amount of integer operations, OMNeT++ is part of the SPEC CPU 2006
benchmark suite. For these tests, the simulator was compiled and linked with all
visualization turned off; the same was done for the INET framework. Then, one of
the INET framework example setups (named “very large LAN”) was started, run for
60 seconds of simulation time, and every 1 million events, OMNeT++ was instructed
to output the number of processed simulation events per second for these 1 million
events. The test was repeated another nine times to get more reliable results, since
they tended to vary by several percent from run to run. As a comparison, this test
was done on computer A running Ubuntu Linux. Then, it was executed several
times on computer A running the modified Xen, inside a synchronized domain. The
test was done for different slice sizes, and paravirtualized as well as HVM domains.

Figure 4.4 shows the performance in events per second for different slice sizes. The
black horizontal line denotes the performance that was reached on the same com-
puter when running an Ubuntu Linux. The reader will note that the performance
numbers actually increase for large slice sizes, compared to the unsynchronized case.
The reason for this is that synchronization masks descheduling from the domain.

1Preliminary last-minute tests with three domains running on one machine reinforce the trends
described here, on all accounts.
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Figure 4.4 CPU performance decreases in relation to slice size. Very frequent
de- and rescheduling leads to degrading results in this CPU integer
benchmark.

Time that has been spent on other duties (such as interrupt handling, which is
done in Xen) is not taken into account when calculating the numbers. This slight
advantage is outweighed by the performance decrease introduced by the constant
scheduling at around 1 ms slice size. The performance then decreases steadily, al-
though the numbers are still at more than 50% at 20µs. Interestingly, hardware
virtualization fares better for the most part. This might be due to the fact that
hardware virtualization can employ some techniques to improve virtualization per-
formance, while paravirtualization is not able to do so. For comparison, the dashed
line denotes the performance of an unsynchronized paravirtualized domain Linux
domain. It shows that the performance increase for large slices is almost identical
in comparison to that of hardware virtualized domains.

However, it should be kept in mind that these numbers reflect only one specific
benchmark; they only measure the amount of integer operations that can be done per
second. Since network-related tasks, such as traversing packets through the network
stack do not purely rely on computing power, the results probably over-emphasize
the performance reduction in more realistic scenarios. However, if the investigation
for which this implementation for synchronized network emulation is used contains
stress tests that lead to high CPU usage, this limitation might influence results. In
this case, it is better to choose larger time slices that affect CPU performance much
less.

4.4 Network Throughput Performance

While it has been shown that packet travel times are accurately modeled in Section
4.1, another aspect is how virtualization and synchronization affect the throughput
performance of the network device as witnessed by the synchronized domain. The
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graphs in Figures 4.5 and 4.6 show results created with the netperf network per-
formance benchmark [42]. Netperf consists of two pieces of software: The netperf
software itself is run on the computer that is benchmarked, while the netserver soft-
ware is run on the machine that forms the endpoint of the network connection that
is being tested. In particular, the TCP_STREAM test was used to measure bulk TCP
data transfer rates. Computer A ran the netperf software, once on a Linux with-
out Xen for comparison, and then on a paravirtualized and a hardware virtualized
Linux, respectively. The tests were done at several synchronization intervals, and
unsynchronized for comparison. Computer B was running the netserver endpoint
software for all tests. Both computers were connected directly to each other, with
no network switch or any other networking hardware in between, in the same way
it was done for the timing accuracy tests.

Each netperf test at each level of synchronization, and also in the unsynchronized
cases, consisted of 12 different tests, combined from three different message sizes and
four different buffer sizes. The message sizes determine the size of the payload that is
being sent over the network with each packet, while the socket buffer size has a direct
influence on the TCP window size. While the latter would typically be chosen by the
network stack and adapted to the connection speed and latency, they are set to static
values in these tests to analyze the network behavior in certain situations. While this
makes the tests somewhat synthetic, the choice of four different buffer sizes can give
insight into typical as well as more extreme and rare situations. The combination of
these two values can already have a poignant influence on the benchmark results in
the standard case on an unvirtualized Linux. Each of the 24 graphs in Figures 4.5
and 4.6 depict a combination of message size, socket buffer size, and virtualization
type (para- or hardware virtualization).

The graphs are read in the following way: Each graph has the performance of the
unvirtualized Linux system in the corresponding test denoted by a black horizontal
line, for comparison. For the same reason, a second, dashed horizontal line denotes
the performance of the virtualized system without any synchronization. For each
virtualization technique, each test was run at four different time slice sizes (1 ms,
300µs, 100µs and 50µs for paravirtualization, and 1 ms, 100µs, 50µs and 20µs for
hardware virtualization). Those four test points are shown in the graph with their
95% confidence intervals, and are connected by a dashed line.

The results are very different between para- and hardware virtualization, which
stems from the driver models used by each technique. Paravirtualization employs
the earlier mentioned “split driver” model. Here, the data that are to be sent over
the network device by the virtualized domain are simply written to a shared memory
area, from which the privileged domain dom0, which controls the network adapter,
reads the data and actually sends them. Obviously, writing to memory is much faster
than interfacing with the network adapter, and memory is always faster by a large
margin than the network connection. Therefore, an effect that at first seems very
strange can be noticed in the netperf results for paravirtualization: with decreasing
size of the time slices that are assigned, network throughput performance increases
(or rather, seems to increase from the viewpoint of the synchronized domain), to the
point where it not only beats the performance of an unvirtualized Linux by a large
margin, but also transcends the limits of the physical line. The network throughput
can seemingly go to several Gbit/sec, which is obviously not realistic. The reasons
for this, and possible solutions, will be discussed in Section 6.2.
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Figure 4.5 Netperf TCP throughput performance tests for different message sizes
m (option -m) and socket buffer sizes s (options -s and -S). Paravir-
tualizated domain synchronized to several chosen time slices.
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Figure 4.6 Netperf TCP throughput performance tests for different message sizes
m (option -m) and socket buffer sizes s (options -s and -S). Hardware
virtualized domain synchronized to several chosen time slices.
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On the other hand, the results for hardware virtualization are somewhat impaired
by the fact that a virtual network device has to be fully emulated and provided to
the hardware virtualized domain. This full emulation of a hardware device in all
its details leads to results that are about 75% lower than without virtualization.2

However, the influence that synchronization has on the results is much more in line
with what one would expect: a slight decrease in performance with decreasing size
of time slices, similar to what is witnessed for CPU performance. At this point,
further analysis on several different computers to check whether CPU speed or other
factors increase or don’t increase the network throughput for hardware virtualized
domains compared to the unvirtualized case would provide valuable insight.

4.5 Summary

The analysis presented here shows that the modifications to the Xen hypervisor
have been successful in creating an environment that allows synchronized execution
of operating systems. It also shows that there is a certain trade-off between two
different types of accuracy: The smaller the size of the CTW synchronization time
slices the higher the timing accuracy, but the lower the CPU performance accuracy.
A user that wants to employ the synchronization system developed for this thesis
will want to run her tests at different slice sizes and compare results, or decide
beforehand about the necessary timing or CPU performance accuracy and decide on
a certain size, accepting potential inaccuracies in the other area.

From the numbers presented in this chapter, it seems as if a slice size of 1ms might
be a “sweet spot” that will be useful in many cases. The timing accuracy is high
enough to produce meaningful information for most evaluation scenarios, because
few network protocols will rely on accuracy in the sub-millisecond range. On the
other hand, the CPU performance (at least the integer crunching one) is almost
identical (HVM) or at least still very close (paravirtualization) to that on a real
operating system. And finally, the overhead introduced by synchronized execution
is still low. This will ensure that generally, the Xen implementation will not be
the bottleneck compared to a complex simulation. Depending on the simulation
complexity, it will be even be possible to run several synchronized domains on one
computer and still not bottleneck the synchronization.

Finally, network performance is still somewhat of a problem. In the hardware vir-
tualized case, it behaves as one would expect it to, but performance is somewhat
low because of the necessary full emulation. In the paravirtualized case, the split
driver model creates unrealistic results. Solutions to this problem will be discussed
in Section 6.2.

2Interestingly, note how the unvirtualized system reaches its limits in throughput for small
socket buffer sizes (8 kilobyte in the test cases). The hardware virtualized case can catch up here
and reach almost 50% of the unvirtualized performance.
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5
Related Work

This chapter will give an overview over other publications in the field of work of this
thesis. It should be noted that there is little to no work that tries to exactly achieve
what has been done in this thesis. Therefore, work related to several aspects of this
thesis are discussed one after another.

5.1 Discrete Event Simulation

The simulator used for this work is OMNeT++, in connection with the INET frame-
work. As laid out in Section 2.1.1, OMNeT++ [69] is a modular discrete event sched-
uler. Its simulation modules are written in C++, and can be combined to form larger
compound modules, which are written in a simple script language named NED (net-
work description). Nearly every part of the simulation model is easily replaceable
by a custom class that serves the same purpose and has the same interface. This is
done by creating subclasses that inherit the interface from generic classes that are
delivered with OMNeT++. A good example of how expansion of OMNeT++ works
is given by the plethora of simulation models that have been developed by other
people for the OMNeT++ simulation system. One of those is the INET framework
[38], which has been used for this work and facilitates the use of the common inter-
net protocols (IP, TCP, UDP, ICMP, etc.), or the mobility framework, which allows
modeling wireless communications of node that move in and out of communication
range of each other.

However, there is a nearly uncountable number of network simulators in existence,
even if only discrete event simulators are taken into account, including, but not
limited to ns-2 [28], parsec [8, 75], SFF [21], and JiST [10]. ns-2 was also mentioned
before. In contrast to OMNeT++, ns-2 is more monolithic, as it brings all standard
internet protocols with it in the standard installation. As the name says (“ns” stands
for “network simulator”), it was also specifically designed for network simulation,
while OMNeT++, although it is also primarily used in this area, supports additional
simulation models due to its large amount of modularity.
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One of the developments in the simulator community is to create simulation systems
that are programmed by the use of standard programming languages, instead of
custom simulator languages developed for the system. The idea is that this will
increase the acceptance of new simulators in the simulation community, since users
will not have to learn a new language to use the simulator. On the other hand,
those implementations have to show that they can compete in performance with
simulation systems that employ custom programming languages to drive them.

OMNeT++ goes halfways along this way: It lets the user create the basic building
blocks, the simple modules, in the form of C++ classes, but description of compound
modules and the overall network is done in a special, albeit very simple, description
language. ns-2 uses C++, and network descriptions are done in Tcl which is not
a language specific to ns-2, although it is not very widely used any more today
and has mostly been replaced by more powerful scripting languages. However, the
simpleness makes learning Tcl not a very time-consuming process. SFF is less a
simulator than a very generic simulation framework that has to be expanded to
fulfill specific roles; its minimalistic interface of a grand total of five classes and a
few dozen methods is available with C++ and Java bindings. Simulators such as
Parsec, which was designed with parallel DES in mind, bring with them their own
specific programming language, in the case of Parsec the homonymous programing
language. At the opposite end, simulation environments such as JiST go through
complicated steps during the compilation phase to allow using standard Java with
few limitations to write simulations models.

JiST is interesting in another aspect: The fact that it uses Java means that the
code is executed in the Java virtual machine. The idea was therefore to modify the
virtual machine in a way that lets the applications inside run in virtual time instead
of expose them to the real time of the outside world. In that way, there is an obvious
similarity to our work, especially since the limitations placed on the Java code are
rather small and often facilitate the use of already existing programs as simulation
models with little change. However, there are certain differences that make JiST
more limited in use. First, the fact that the changes were made to the Java virtual
machine means that it only works with Java programs. This not only rules out
prototype implementations that were written in other languages, but it also means
that it is not possible to analyze changes to the operating system kernel. Second,
while our solution keeps the timing behavior of the real system intact (for the most
part), JiST decided to forego a time model that closely resembles the original one.
Instead, it mimics the behavior of more traditional simulators by enforcing that no
instruction takes any time to execute except for sleep. Therefore, the code execu-
tion can be modeled by a sequence of separate events that all execute immediately,
therefore creating a discrete event model. So while we brought the arbitrary starting
and stopping ability of classical simulations to the prototype implementation, JiST
removed the normal timing behavior of an application in lieu of the discrete event
time concept of simulations.

Along a similar line, Kunz [46] presented a system that allows to plug real-world C
code (in this case network stack code) into OMNeT++ for debugging and simulation.
The C code is wrapped into C++ and converted so that for example, retransmission
timers are modeled as self messages. As is the case with JiST, code has to fulfill a
few rules so as to be convertible, and each module that is created from a predefined
block of C code will run without any time consumption when it is called.
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Discrete event simulation systems can also be categorized by the level of detail they
work on—that is, what constitutes an event. Most of the previously mentioned sim-
ulators are packet-based, so events are closely related to sending and receiving of
packets between network nodes, and their encapsulation and decapsulation in a net-
work stack. SSF, however, is generic enough not to specify what level of abstraction
its simulations work on. Also JiST, as a tool which works closely on almost-stock
source code, and is not primarily concerned with network simulation, is not packet-
based, but method-based: Each method forms an event that is executed at a certain
point in virtual time, without this time progressing from instruction to instruction;
events are scheduled for a future point in simulated time by calling the sleep func-
tion, followed by a method call.

Since packet-based simulation models networks on a very low-level basis, and events
have to be scheduled whenever a packet is sent, received, or processed in any way,
this way of simulating networks naturally becomes computationally expensive with
the growth of the network, its complexity, and the rate at which data are exchanged
between the nodes. A way to speed up simulation is therefore to abstract from
packet-level. One approach is to model a cluster of packets that is exchanged between
two nodes into a single so-called “packet train”, which reduces the number of events,
as presented in [2]. Another, more radical approach is fluid-based simulation [6], in
which the simulation model fully abstracts from single packets, and rather models the
rate of packets that are exchanged as a fluid flow with a given flow rate. Events are
then based on the change of the rate, and this way a single event that defines a flow
can replace thousands of events in a packet-based simulation, while still maintaining
the ability to measure many performance characteristics [54, 62]. However, fluid-
based simulation is not without its own problems: An issue named the “ripple effect”
[48] can massively increase the number of events, to the point where performance
can drop below that of a packet-based simulator. While there have been solutions
proposed [73], they introduce even more abstraction inaccuracies.

Moreover, all of these abstraction approaches are not useful in our field of interest.
For a simulation to be able to communicate with a prototype implementation, it is
necessary that it can send replies to single packets that have been inserted into the
simulation. If it abstracts from single packets, it will not be able to communicate
properly with the prototype any more.

5.2 Opaque Network Simulation

Another set of tools has been developed to model networking behavior with a much
higher level of abstraction than any typical discrete event simulator. These tools
do not simulate any network nodes; rather, they only model the behavior of a link
between real machines that house prototype implementations. This modeling mimics
typical properties of internet connections, for example, a certain amount of link delay
and limited connection speed. This approach is called “opaque network simulation”
because the data packets sent through the simulator are not interpreted in any way.
Each packet is seen as a black box, and the only property that can be changed is
the speed at which it is released from the application after it was received.
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It should be noted that often, this opaque network simulation is also called “net-
work emulation”. While it shares this term with the network emulation that was
described in Section 2.3, the two are fundamentally different. In our case, network
emulation means the translation of the representation of data from packets to simula-
tor messages and vice versa, while opaque network simulation mimics (emulates) the
behavior of a long-distance connection. However, in this section, “network emulator”
will be used with the meaning “opaque network simulation”.

The simplest network emulators just tap into the networking stack of the operating
system on which they run, and introduce an additional queue that delays packets by
a predefined amount of time, and possibly randomly drops some of them. Hitbox [3]
and Delayline [39] belong to this class. Slightly more complex are systems that use
multiple queues, and also model connections between them that are assigned certain
properties, such as bandwidth. Two of those network emulators are dummynet [60]
and ONE [4]. Dummynet comes in the form of a patch to the FreeBSD kernel,
and taps into its network stack to intercept packets. To model network routers, it
uses queues in which it saves packets and keeps them for a predefined time, with
the possibility to drop a random amount of them. The link between those routers
is modeled by copying packets from one inqueue to another outqueue, at a certain
maximum rate. Dummynet is used by having at least two network adapters inside
the computer it is running on, and connecting the prototypes (at least two) that
are to be tested to one of them each. All communication therefore goes through the
dummynet system as a gateway, and thus facilitates the introduction of the described
effects on every packet. ONE, the Ohio Network Emulator, works almost identically;
the main difference is that it runs on Solaris, and does not require changes to the
operating system, since it runs in user space.

A newer generation of network emulators comes with additional capabilities. For
example, NIST Net [16], developed at the National Institute of Standards and Tech-
nology, a Linux kernel-based software, also facilitates packet duplication for testing
scenarios, in addition to the standard delay and packet loss settings of the earlier
emulators. Also, it can model the behavior of the link using trace files, that is, live
recordings of how network traffic behaved over a certain connection, and the mod-
eling of congestion-dependent loss, instead of a fixed random percentage for each
package. In addition, it makes use of higher-resolution timer hardware in the system
it runs on, so it can control packet delay more exactly, which is very helpful with
faster connections, such as 1 GBit Ethernet.

Emusocket [7] also allows the user to set connection properties in a more detailed
way than in earlier emulator software. While it does not have the advanced timer
resolution capabilities of NIST Net, it has the advantage of running in user space
(which is the main reason of this drawback). However, it is designed for use with
Java applications only, by inserting itself into the socket API. One advantage it
has over many other emulators, such as the previously mentioned ONE, is that it
is not necessary to use a dedicated computer with at least 2 network adapters to
use Emusocket. Rather, all software that is to be tested can be executed on one
machine, since the network emulation work is already done at socket level.

While Emusocket allows users to run all software on one machine, RAMON [35]
is a rather complicated setup consisting of software that is based on NIST Net,
and dedicated hardware that is driven by the emulator. RAMON was designed
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to do network emulation in wireless networks and model mobility without having
to move the prototypes that are tested. To reach this goal, RAMON uses several
hardware nodes, each of which is connected to an omni-directional antenna via an
attenuator and functions as an access point to the actual prototype. A control
connection between the central network emulation entity and those nodes allows to
set the signal strength and signal-to-noise ratio of the connection between them and
the prototype. By changing these two factors according to the control information
sent by RAMON, the connection can be modeled in a way that mimics mobility of
the prototype in a wireless network. While this works well, the complex setup and
necessity of much more hardware than most other network emulators makes this a
costly and somewhat complicated solution.

All in all, it has to be said that opaque network simulation excels in the area of
speed over packet-based discrete event simulation. The fact that packets are not
processed in any way beyond what is done in any network router facilitates much
higher throughput through the simulation, since not every packet has to be processed
through all network stack layers. Opaque network simulators generally are fast
enough to service at least a 1 GBit ethernet connection. For comparison, NIST Net
was used with a a 200 MHz Pentium computer, and was able to cope with a saturated
100 MBit link [16]. However, this abstraction means that it is not possible to model
a full network with nodes that the prototype can connect to and communicate with;
all of these opaque network simulators can simulate only a network connection, or
a set of those, with specific behaviors. It is therefore generally necessary to have at
least two prototypes for analysis, and if more complicated network setups are to be
tested, the number may rise quickly. In contrast, simulators such as OMNeT++ can
model all nodes in a network, complete with the possibility to communicate with
them, and analysis of an implementation therefore generally requires only a single
prototype in hardware if the solution presented in this thesis is used.

5.3 Emulation

The “classical” emulation, as defined in Section 2.3, is subdivided into two categories
that depend on how the two entities that are to be combined—that is, simulation and
prototype implementation—are connected. One way is to take the software that con-
stitutes the implementation, and insert it into the simulation model. This is called
environment emulation, or sometimes also software-in-the-loop (SiL) simulation. In
the field of network simulation, it is often used by taking an implementation that is
already known to work, and is in widespread use, and insert it into the simulation to
make that simulation’s behavior more realistic. This has been done for the FreeBSD
network stack, which has been inserted into the OMNeT++ discrete event simula-
tion system [14]. The “Network Simulation Cradle” [41], a wrapper that can be used
with several different operating systems’ networking stacks (FreeBSD, OpenBSD,
Linux), facilitates insertion into the ns-2 network simulator. Both of these increase
the credibility of simulation results that deal with network throughput.

This usage of environment simulation is the counterpart to what it is typically used
for in many other fields, in which the prototype implementation is to be tested
for correct behavior. However, if the changes in the prototype implementation are
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done inside an operating system’s network stack, for example when developing a
new protocol, it is possible to use an already existing environment emulation system
such as the ones described above, and patch the changes into the network stacks
used there.

An approach that is somewhat of a hybrid between environment emulation and
opaque simulation is the ENTRAPID Protocol Development Environment [36]. Run-
ning in user space, it creates “virtual network kernels” (VNKs) that are based on
the FreeBSD networking stack, although the authors argue that with little work,
any arbitrary network stack can be used in the same way. The stack can then be
modified for the addition and subsequent testing and analysis of newly developed
network protocols. Every VNK can be understood as a network node, and in this
way ENTRAPID can be seen as a simulation environment, with the difference that
all nodes necessarily contain an environment emulated network stack, whereas in a
simulator, one could run a subset of nodes with an integrated network stack, and
some with the simpler (and faster) standard model. To test those network stacks,
application software is necessary that sends and receives data, and those are as-
signed to a VNK. In this way, ENTRAPID is similar to opaque network simulation,
in that no sophisticated simulation nodes exist that are simulated. Also, simulation
is not event-based, but rather works with real time values. Meaningful performance
evaluation is, however, somewhat impaired by the high overhead introduced by the
VNKs.

The second type of emulation as defined per Section 2.3 is network emulation, or
sometimes also named “hardware-in-the-loop”. Kevin Fall was the first to present
such a system, which was developed for the predecessor of the ns-2 simulator, ns [27].
It already contained the vital part of a network emulator: a translation unit that
transformed network packets into simulator messages, and vice versa. Despite its
age, it has (in a more recent, updated version) still been in use recently for network
emulation research, such as in [33]. Network emulation has also been used with
other network simulators, such as the commercial OPNET [17] simulation system.
[13] used a two-stage process, in which the communication between real systems
and their network packets, and OPNET and its message format is facilitated by
translating both into a standardized message format that is part of the HLA (High
Level Architecture) [23], which was specifically designed for interconnection of and
communication between simulation systems.

For OMNeT++, the network simulator that was used in this thesis, work has recently
been done to create a full-fledged network emulation interface. [67] uses a translator
between simulation messages and network packets that is very similar to the one
created for this thesis. However, their solution is slightly more general due to the
fact that their translator does not represent every prototype implementation with a
counterpoint in the simulation model. Rather, they have the translator behave like
a router to the simulation, and a gateway to the prototype implementation(s). Also
communication between the prototype and the emulator is not done via tapped and
UDP-tunneled packets, but rather by using the standard routing infrastructure of
every network. Packet data is written using libpcap [66], which allows the gateway to
send packets that bear the addresses of the simulated hosts in their headers instead
of the gateway’s.
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Of the two types of emulation, environment emulation is unsuitable to reach the
goals set for this thesis. As it inserts an implementation into a network simulator,
it suffers from similar problems as JiST [10], presented in Section 5.1. The imple-
mentation loses its notion of wall-clock time, and instead uses the simulated time
that is presented by the simulation system. As such, while it is possible to analyze
the correct functionality, meaningful performance analysis cannot be done any more.
Network emulation, on the other hand, will also be unable to produce meaningful
timing information in scenarios with complex simulations unless it employs synchro-
nization. None of the solutions so far have done so, and so rely on the simulation
always being able to run in real time. While all network emulation systems presented
here can cope with simulations that run faster than real time, none will produce use-
ful results when the simulation cannot keep up with the prototype implementations
that are connected to it. To the knowledge of the author, this thesis is the first work
that has tried to relieve simulations of this constraint.

5.4 Encapsulation of Real Systems

While virtualization and CPU emulation are both techniques that have been used for
a long time, and implemented for a wide range of hardware, presented for example
in [9, 12, 20, 37, 44, 50, 72], the idea to use the encapsulation that is attained this
way for network emulation, or at least some sort of network performance analysis,
is rather new, and has not found widespread use yet.

Gupta et al. presented a system in [32] that facilitates network performance evalua-
tion for network speeds that are not available yet. Similar to this work, Xen is used
to encapsulate an operating system as virtualized domain, and the timekeeping sub-
system is modified to achieve what the authors call “time dilation”: The illusion to
the virtualized domain that time is running slower than it actually is. This, in turn,
can increase network throughput, as it appears to the domain. If a domain is run
with a time dilation factor of 10, i.e. time is passing 10 times slower inside the system
than it does in reality, a 1 Gbit Ethernet connection may appear as a 10 Gbit one, if
it is saturated, because events arriving from outside the machine are not scaled. To
also scale package round-trip times accordingly, dummynet [60] was used. The main
difference in how timekeeping was changed for their work and for the work presented
here is that time is slowed down uniformly, whether the domain was scheduled or
not, and not stopped when the domain is descheduled. Also, the original system
only supported paravirtualized domains, and did not change the scheduling subsys-
tem. A follow-up publication [31] expanded on the original work by introducing
more advanced managing techniques, support for hardware virtualization, and the
scaling of hard disk I/O according to the dilation factor.

Virtutech Simics [50] is a full system simulator, i.e. it emulates the behavior of a
CPU, as well as all hardware devices that are connected to the simulated system. In
contrast to other CPU emulators, which often are built for a high level of accuracy
down to instruction or even cycle level, Simics was designed to be a fast simulator,
at least in comparison to other such applications. To reach this goal, it has to com-
promise in some respects. For example, hardware emulation is transaction-based,
i.e. data that are sent over the emulated network adapters are simulated not as single
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bytes sent one by one, but rather the packets form atomic units. Moreover, Simics
is only instruction accurate; it does not provide cycle accurate timing information.
Simics has been used for network analysis. [26] presents a system to use Simics for
evaluation of network performance of embedded devices. While Simics can simulate
systems with more computing power, full system simulation is arguably too slow
to make this a worthwhile effort. The solution presented for the embedded devices
facilitates the execution of several simulated nodes on one machine, as well as the
execution on several physical machines, which are then synchronized against each
other, much in a way that parallel distributed simulation works. While this work is
very promising, as full system simulation allows exact synchronization down to very
small time slices, less than what is feasibly achievable with the approach presented
in this thesis (see in specific Section 4.3) and brings a full hardware emulation to
the table, the performance is very low compared to a virtualization solution. A very
simple test conducted by the author showed that a Windows XP took more than
8 times as long to boot, compared to a Xen domain (335 seconds vs. 40 seconds).
Furthermore, some findings suggest that Simics’ abstraction from an exact 1:1 emu-
lation of x86 current processors, such as no emulation of out-of-order execution, can
lead to inaccurate performance results compared to real processors [71], something
that one would generally not expect from a full system simulator.

5.5 Extensions to Xen

The author’s work on Xen is by far not the only extension that has been done in
the scientific community. In fact, the freely available code, its publication under the
GNU General Public License, and its modular design have created possibilities to
create a plethora of extensions that cater to different needs. A few of these will be
presented as examples in this section. It should be noted that the work done by
Gupta et al. [31, 32] could have also been presented in this section instead of the
previous one, since it also constitutes a Xen extension.

One of the more obvious and straightforward applications is to use Xen to debug
operating system kernels. Generally, kernel debugging is a tedious task, since the
choice of tools is limited. Separating the operating system from the hardware and
the ability to stop execution allows for more convenient debugging. A first step is to
use an unmodified Xen and its already existing facilities. Kamble et al. presented
in [43] how to use Xen for Debugging kernels with gdb [30] and its gdbserver-xen
extension, which is supported by any standard Xen without changes to the code.

Another step forward has been done with the creation of the Xenprobes framework
[53]. Probing allows the user to set a breakpoint on any instruction in the (vir-
tualized) kernel. Whenever this instruction is to be carried out, a special debug
interrupt is raised, which returns control to Xen. Xenprobes supports two types of
probes. One is suitable for single instructions that are to be probed, by calling a
pre-handler and a post-handler function immediately before and after the instruc-
tion is executed, respectively. The other type is used for probing function calls. The
interrupt is set on the function entry point, and whenever the function is called, an
entry-handler is executed before control returns to the function, and an exit-handler
when the function is about to return. The probes and their associated interrupts
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can be dynamically set at run time, and since each handler is a normal function,
the choices of what to do when a breakpoint is reached are near limitless. A simple
debug output via printk is just as possible as incrementing counters for profiling, or
snapshots of values of certain variables.

XenAccess [55] is a tool for memory introspection (primarily; other applications,
such as disk monitoring, are in development, but not as mature). It facilitates the
reading of domain memory, and uses the kernel symbols to find the requested data
structures. They can then be read and presented to the user. XenAccess comes
with examples to, for example, read the current list of running processes on a Linux
kernel, or the currently loaded kernel modules, but it can be easily extended to
provide other information. Introspection is not limited to paravirtualized domains,
but can also be used with hardware virtualized ones. Besides the fact that this tool
facilitates the collection of statistical data about a running system, it can also be
used as an intrusion-detection system (IDS), by monitoring an operating system’s
system call table for changes, or the integrity of kernel modules. A downside is that
XenAccess needs detailed information about the kernel memory layout of a system,
so it can find the entry points for linked lists and other data structures that it wants
to introspect, so it has to be updated whenever this layout changes in a new version
of the operating system kernel.

Another very interesting extension for Xen is PTLsim/X [74], a cycle accurate full
system simulator that can drive a Xen domain. Its author asserts that it is the only
such simulator that it available as open source. It simulates a x86-64 processor,
complete with modeling of pipelines and out-of-order execution. A very interesting
property is that PTLsim can be switched between its cycle accurate mode and native
execution of instructions for higher speed through areas of code the user deems
uninteresting. When a domain is created, a small amount of memory is set aside
to load PTLsim into it. The simulator then works as another layer of indirection
between the hypervisor and the domain. Because cycle accurate mode is much slower
than native execution, livelocking due to incoming network packets poses a problem:
Processing a packet will take much longer, during which several new packets might
have arrived for processing, giving the illusion of an extremely fast network, similar
to what was done on purpose in [31, 32]. Here, however, this behavior is not desired.
The same can happen with other hardware devices. Therefore, PTLsim checkpoints
the system when it is set into cycle accurate mode, runs for another small amount of
time in native mode, and logs all hardware device interaction in a trace file. Then,
it returns to the check point and replays the hardware events at the appropriate
time during cycle accurate simulation. The threat of livelocking is very real: Like
other cycle accurate simulators, PTLsim runs extremely slow in this mode. In a test
presented in [74], a test that took 0.7 seconds in native execution mode ran for more
than 62 minutes when done in cycle accurate mode. This means the simulation ran
at less than 0.02% of real time, an overhead factor of well over 5000.
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6
Future Work

In this chapter, the author wants to present a few fields of work that might benefit
from more detailed research, analysis or further development. Three topics will be
discussed here. The first deals with how to expand synchronization onto virtualized
domains that have been created with more than one VCPU because this case is
different from the uni-virtual-processor case. The second discusses solutions to the
problem of unrealistic network throughput reports in paravirtualized domains (see
Section 4.4), which can skew performance evaluation results for this virtualization
mode. Finally, the third topic discusses how to expand the synchronization system
presented in this thesis to facilitate more detailed debugging and analysis of the
prototype implementations running in synchronized domains. It will propose inves-
tigation into how this work can interact with XenAccess [55] and Xenprobes [53],
and how these tools might benefit from each other and whether there might even be
beneficial synergy effects improving the usefulness of each tool.

6.1 Synchronizing Virtualized SMP Systems

Xen allows domains to have as many virtual CPUs as the administrator desires (up to
a certain hardcoded limit, but not limited by the number of physical CPUs present
in the system). The changes to Xen done for this thesis have kept expandability
to support for multi-VCPU domains in mind, and most of the code could actually
work with such domains. However, some vital sections (especially the notification
from sEDF to the main scheduling loop that a domain has finished its assigned
slice, as described in Section 3.4.1.2), will need a few more changes. The reason
that the author has not finished the work in this area and this work has focused on
synchronizing single-VCPU domains is that synchronizing domains with more than
one VCPU creates additional, more fundamental problems in respect to timekeeping.
First of all, it is important to discriminate between two cases: The number of VCPUs
can either be lower than or equal to the number of physical CPUs, or it can be higher.
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(a) SMP domain in regular mode. All domains agree
on a common time base based on real time.

(b) For comparison: a one-VCPU domain in synchro-
nized mode. Time only proceeds while the domain is
scheduled.

(c) A synchronized SMP cannot run its VCPUs in the
same way. What time is it at the lightning mark?

(d) A solution is to always schedule all VCPUs at the
same time.

Figure 6.1 Synchronizing SMP domains creates new problems.

6.1.1 Case 1: Number of VCPUs Lower Than or Equal To Num-
ber of PCPUs

When the Xen scheduler schedules a multi-VCPU domain, it makes use of its timing
information and relays it to the domain. In other words, the domain will be able to
recognize that its VCPUs do not run 100% of the time. At times, none may run, or
one, or several but not all, or all of them at the same time. This is not a problem
because overall, the scheduler will ensure that the domain receives the time it was
assigned by the administrator. When a domain is assigned a certain slice of time,
it will receive an overall CPU time of s · v, where s is the slice and v the number of
VCPUs. For example, a domain with 4 VCPUs and an assignment of a slice of 10 ms
every 100 ms will receive 40 ms of CPU time during those 100 ms, if possible. When
this happens during the 100 ms period is up to the scheduler. As in the uniprocessor
case, with a standard Xen installation, domain time correlates with real time. This
is depicted in Figure 6.1(a). Time even passes when no VCPU is running.

This way of scheduling multi-VCPU domains—that is, scheduling each VCPU in-
dependent of each other—does not work for synchronized domains. There are three
constraints that have to be met when scheduling a synchronized domain of several
VCPUs:

1. Time progresses if and only if the domain is running.

2. Time to run is assigned by the synchronization server.
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3. The total CPU time is the assigned time multiplied by the number of CPUs.

If the VCPUs are simply scheduled at some point during the deadline period, timing
problems can happen, such as in Figure 6.1(c). VCPU 1 was started after VCPU 0.
Time was frozen before VCPU 0 started, and then started progressing again. The
VCPUs were scheduled for 30 time units (for the sake of this example it does not
matter whether these are microseconds, milliseconds, or any time unit). After this
time, VCPU 0 is stopped, but VCPU 1 is still running. Time-wise, the domain is
now in a difficult position. What time is it at the point denoted by the lightning
mark? If time continued to run, it might be around 40 time units. This, however,
violates constraint 2, since the time progresses farther than the allowed 30 time
units. Another approach would be to freeze time at 30 units. This, on the other
hand, violates constraint 1 and can lead to problems for the programs running on
VCPU 1, since time calculations will be based on a time that does not progress, and
therefore invariably will be wrong. Other ideas include stopping all VCPUs when
the assigned time has been used up (violates constraint 3), or giving each VCPU its
own time base (which again disturbs time calculations, since time might jump back-
and forwards if it is compared between different VCPUs, and so violates constraint
1).

This is a serious problem for synchronizing virtual SMP domains. So far, the author
has found only one solution: All VCPUs of a domain have to be scheduled at the
same time, as depicted in Figure 6.1(d). In this case, all three constraints can be
held: Time progression coincides with running VCPUs, and the assigned time is
accurately used up, in wall clock time as well as CPU time. However, this requires
more logistic overhead than in the single-CPU case. In detail, a close cooperation of
and communication between the schedulers running on the different physical CPUs is
necessary. Whenever a domain is scheduled, and the scheduler is called on one of the
PCPUs, it has to pick a VCPU of the synchronized domain, set a flag (atomically)
that represents the VCPU, signals that it is ready to be scheduled, and is readable
by all the other scheduler instances. Finally, the scheduler has to spin and check
the array until all flags are set. The next scheduler that is called has to do the
same with the next VCPU, and so on, until all VCPUs are ready to start running
immediately. In this case, the schedulers will stop spinning, and all start scheduling
the VCPUs, all simultaneously, therefore agreeing on a common timebase. This
is similar to how both Linux and Xen measure drift between the TSCs of different
CPU cores at system boot time on SMP systems. However, using this technique in a
scheduler that is called many times per second will probably incur a very noticeable
performance decrease.

6.1.2 Case 2: Number of VCPUs Greater Than Number of PC-
PUs

This case incurs even more problems than the first one. In this case, it is not possible
to use the technique described above because there are not enough physical CPUs
to schedule all VCPUs at the same time. A completely new technique would be
necessary. While the author, at this point in time, cannot think of any elegant
solution which would not violate one of the constraints for proper timekeeping laid
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out above, it is a field that might spur future work and will need more research and
discussion to come to a well-founded conclusion about its feasibility. A solution to
this problem would also probably produce a more efficient solution to case 1 than
the proposed strict simultaneous execution.

6.2 Network Throughput Performance

The analysis presented in chapter 4 has shown that for the most part, the synchro-
nized execution of the virtualized operating systems works very well. However, one
area is somewhat problematic. The network throughput for paravirtualized domains
(see Figure 4.5 on page 53) as it is witnessed by the synchronized domain is not re-
alistic. This can be seen by the fact that a TCP throughput benchmark reports
numbers as high as 3 GBit/s on a network adapter that only supports a maximum
of 1 GBit/s. This is due to Xen’s “split driver” model. The paravirtualized domain
uses a very simple network driver front-end, which does not interact with the hard-
ware at all, and rather puts data it wants to send out into a shared memory area.
The dom0 contains the actual driver back-end that interfaces with the hardware,
and will take the data out of the shared memory to send packets on behalf of the
unprivileged domains.

Obviously, writing data into memory is a much faster operation than sending data
to the network adapter. The synchronized domain therefore can put more data
into the shared memory than it would be able to send to the network adapter, if
it had direct access to it, up to the point of completely filling the shared memory.
Whenever the domain is descheduled, the control domain dom0 starts to empty the
shared memory buffer and send the packets over the wire. This happens while the
synchronized domain is descheduled, and therefore during a time that it doesn’t
realize is passing at all. Since the dom0 is running much more often in between the
synchronized domain for smaller time slices, this explains the seemingly increasing
speed with decreasing slice size.

A solution to this is to change the back-end network driver in the privileged do-
main dom0 to be aware of the synchronization of domains that it sends and received
packets on behalf of. Thus, a synchronized driver would send only the appropriate
amount of data to the network adapter whenever a synchronized domain is desched-
uled. For example, if the size of the time slices was set to 100µs, and the network
adapter is a 100 MBit Ethernet device, the maximum amount of data to be sent
would be 1250 bytes. Packets are sent out until this margin is reached.

Another way to tackle this problem could be to investigate PTLsim’s [74] capabil-
ities at doing a full emulation of hardware devices. Then again, the cycle accurate
execution entails a crippling speed penalty which in all likelihood rules out this
approach.

Finally, it should be noted that fully emulated drivers in hardware virtualized mode
do not produce paradoxical results for network throughput performance, but rather
behave as expected. However, network throughput is noticeably lower than on an
unvirtualized system. If one found a solution to synchronize the paravirtualized
back-end driver, it would be possible to eventually use special drivers in the hard-
ware virtualized domain that take advantage of the knowledge that their operating
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system is virtualized. Such paravirtualized drivers for hardware virtualized domains
have been in development for some time—for example, for Windows XP [34]. This
way, the network throughput performance of hardware virtualized domains could be
increased, and a combination of high performance and meaningful results could be
reached.

6.3 Introspection and Probing

This work presents a set of tools that facilitates synchronization of an operating
system with a prototype implementation to a packet-based discrete event simulator.
One of the reasons for this was to lower the requirements for prototype analysis by
using only one prototype together with a simulated network, instead of a testbed of
many prototypes. In addition, it is much faster and easier to restructure a simulated
network inside a simulation than it is to reorganize a network testbed constructed
from real machines.

Another step forward in this field of both detailed and convenient analysis would
be to expand the Xen implementation to make debugging potential software errors
easier, while the prototype is running inside a Xen domain. Section 5.5 presented
two extensions to Xen that can aid the user in debugging, namely XenAccess [55] and
Xenprobes [53]. XenAccess allows introspection into the memory of a domain that
is currently running, and Xenprobes places hook functions on instructions. Each of
these tools on its own is already a helpful aid in analysis and debugging. Combined,
and with the synchronization presented in this thesis, they can form a powerful
combination for development and analysis. It would be possible to read the contents
and state of the networking stack of a synchronized operating system via XenAccess
whenever an assigned time slice has ended, or to probe certain functions in the code
that was added.

While both tools introduce a considerable overhead and therefore slow down the
execution, synchronization as presented in this thesis will ensure that the results are
very close to the behavior of the uninstrumented system in regards to time behavior.1

While the machine that Xen and the synchronized domain are executed on will take
longer to execute one time slice, we have shown in Chapter 4 that time warping
as presented in Section 3.4.2 accomplishes requirement 2 as set in the introduction.
Therefore, time spent outside of the synchronized domain—that is, in XenAccess
or Xenprobes—will not be attributed to the synchronized domain; the additional
overhead that is created is only a nuisance, but it will not influence the results in
any clearly noticeable way.

The next steps in this direction could be to test how well XenAccess and Xenprobes
work together with the current version of Xen, and the synchronization changes.
Then, XenAccess would have to be extended to read network stack status, and
make it executable from either the Xen kernel or the dom0 kernel, so that it could be
called automatically whenever a synchronized domain has finished running its time
slice. Since XenAccess runs inside the privileged domain dom0, the timewarping

1In theory, the only differences will be due to more context switches between synchronized
domain and Xen/dom0, and performance decreases due to cache misses and pipeline stalls. The
effects of this can be seen in Figure 4.4 and page 51.
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code should work with it without any changes. For Xenprobes to work properly,
a small change to the debug interrupt’s handler will be necessary, so as to stop
the synchronized domains time while the interrupt is being serviced; this way, the
interrupt handling will not be realized by the domain due to lost time.



7
Conclusion

This diploma thesis presented network emulation, that is, the connection of a real
system running a prototype implementation with a network simulator, and focused
on a specific problem of this field: The fact that while both have a notion of time,
its representation is fundamentally different in a simulator and a real system on
x86 hardware. It was shown that problems occur when these two representations
of time do not agree on the current time. So far, this problem had generally been
solved by using simulation systems on very fast hardware, or distributing them over
several machines, to ensure that they will never be slower than real time, even in
very complex simulation, and then slow them down to real time when they are faster.
This ensured that simulation time would run in unison with real time, which is the
basis of the clocks inside a hardware prototype.

However, the underlying problem is that it is not always possible to make a simula-
tion fast enough to meet the goal of real time capability. For every system, no matter
its number-crunching ability, there are simulations complex enough to slow it down
so that this capability is lost. Therefore, this diploma thesis presented a way to
slow down the real system that is connected in the network emulation scenario, and
execute its operating system synchronously to the simulation, so that the real-time
constraint is lifted from the simulation.

To reach this goal, the Xen Hypervisor was used to encapsulate the real system
inside a virtual machine, so as to detach it from the hardware it would otherwise
run on, while keeping all of the internal behavior intact, so that results from running
the prototype implementation are credible. Two fields of work were identified to
facilitate synchronous execution. First, Xen’s scheduling subsystem was modified so
that it allowed precise scheduling on demand of a virtualized OS for short amounts of
time. This made it possible to have a real system wait on the simulator whenever the
latter fell behind because it could not run in real time. Second, the interface between
the OS and the hardware clocks that define its timing behavior was modified to mask
passing of time while the OS is descheduled, so that the illusion of a continuous flow
of time is upheld. This way, an operating system could be stopped for arbitrary
amounts of time, without the OS ever noticing it was stopped.



74 7. Conclusion

A detailed insight into how these changes were implemented was given in Chapter 3.
Changes to the scheduling subsystem involved modifying the Xen sEDF scheduler,
but also the main scheduling loop, to make it aware of time it consumed itself
during the scheduling. Changes to the timekeeping subsystem had to be done for
both paravirtualized and hardware virtualized Xen domains, and involved using time
information created by the scheduler and by Xen’s own timekeeping facilities to stop
timers that signaled the passing of time, and warp them and time counters in proper
ways to keep up the illusion of a continuous flow of time to the Xen domain.

To construct a fully working setup in which synchronized network emulation could
be used and its correct functionality be analyzed, a set of tools was developed and
implemented besides the Xen modifications. First of all, a central synchronization
server was necessary that kept a reference clock and instructed simulation and proto-
type to run for specified amounts of time, implementing a conservative time windows
algorithm (see Section 2.4). It was also necessary to create a client that ran on the
Xen machine and formed an interface between the synchronization server and the
modified Xen. Finally, an emulator had to be constructed that made communication
between simulation and prototype possible.

When the work for this thesis was started, it was not clear whether an approach to
synchronized network emulation using the Xen Hypervisor was feasible at all. The re-
sults of the analysis presented in Chapter 4 showed that the solution presented works
very well, providing a synchronization accuracy of down to 10µs. Furthermore, at
larger time slices that are nevertheless still useful for network protocol analysis in a
network emulation scenario, the overhead introduced by the synchronization is very
low, less than 50% at an accuracy of 100µs, and less 25% for hardware virtualization
and 6% for paravirtualization for an accuracy of 1 ms. Finally, the timing results
measured are very comparable between a network emulation setup with a simulation
that is not real time capable, and a setup consisting of two real systems. This means
that the solution presented in this thesis can be used for detailed and meaningful
analysis with simulations of arbitrary complexity, relieving network emulation of its
constraint of real time capable network simulations.

The main problem with the implementation at this point in time is that, for operating
systems virtualized via paravirtualization, network throughput results measured in
the virtualized operating system are not credible. Suggestions on how to solve this
problem were proposed in Section 6.2. The author assumes that a solution will not
only be possible, but also realizable with relatively little investment of time and
work.

Finally, while this work has focused on using synchronization of operating systems
for synchronized network emulation, a fundamentally new field of application opens
up when it is combined with tools for introspection and probing. As has been
described in detail in Section 6.3, a combination of this work’s synchronization with
XenAccess and Xenprobes will allow to debug an operating system with convenient
and powerful tools, while at the same time keeping its timing behavior intact. While
generally, debugging introduces new delays, and breakpoints set for this purpose
can totally change the timing behavior, synchronization will mask the time spent in
debugging functions from the debugged operating system. This will allow to debug
a system that behaves as if it was running without any debugging action, even in
time-sensitive areas of the implementation.
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Therefore, the author not only concludes that synchronization of operating systems
created a system for feasible and powerful network analysis through synchronized
network emulation, but he also anticipates exciting new use cases in the field of
operating system debugging.
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A
Synchronization System Setup

This appendix will give a more comprehensive overview over what configuration op-
tions exist for the different programs that together form the synchronization system
developed for this thesis, and how to set up synchronized network emulation between
an OMNeT++ simulation and a Xen domain.

A.1 Configuration Options

A.1.1 Stand-Alone Synchronization Server

The stand-alone synchronization server is a user-space application that is configured
via its configuration file config.sync which the server expects to be in the same
directory as the executable. It is in a standard INI file format, i.e. it consists of
sections that contain variables and their assignments. Note that while the server
comes with some rudimentary support functionality to run as client, there is little
use for this feature at this point in time, as it can interface with neither Xen nor
OMNeT++ in this function. Consequently, this setup has not been tested.



84 A. Synchronization System Setup

Section Name Description
GENERAL mode “client” or “server”

SERVER

srv barrier interval An integer that sets the size of a CTW syn-
chronization time slice, in µs.

srv brdcast address The IP broadcast address of the network, in
dotted decimal notation.

server port The port the server listens on.

CLIENT

client id A numerical identifier for the client. Must
be unique over all clients participating in the
synchronization.

client type An identifier that can describe the type of
client.

client sync server The IP address of the server the client will
connect to, in dotted decimal notation.

client port The port the client listens on, i.e. the port on
which the broadcast run messages are sent.

A.1.2 Xen Synchronization Client

The Xen synchronization client comes in the form of a kernel module. All options are
passed on the command line, or can optionally be added to the module options file.
The location of this file depends on the used Linux distribution, but a typical location
is /etc/modprobe.d/options. Note that the option to use the kernel module as
synchronization server was not thoroughly tested.

Name Type Description
run as server int If set to 1, allows the module to function as server

instead of client.
server address char[] The IP address of the server, in dotted decimal no-

tation.
server port int The port the synchronization server listens on.
broadcast address char[] The IP broadcast address of the network, in dotted

decimal notation.
client port int The port the client listens on, i.e. the port on which

the broadcast run messages are sent.
cli id int A numerical identifier for the client. Must be unique

over all clients participating in the synchronization.
cli descr char[] A description string that can be used to identify the

client at the server.
sync domain int[] A comma-separated list of domains that are to be

synchronized on this machine.
barrier time int In server mode: the size of a CTW synchronization

time slice.

A.1.3 OMNeT++ Synchronization Client–Scheduler

The synchronization client written for OMNeT++ is part of the scheduler that
drives the simulator according to the assigned time slices (see Section 3.2.2 for more
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information). As such, it is configured the same way as any other OMNeT++
component, i.e. by setting the options in the omnetpp.ini file that belongs to the
simulation model. First of all, the option scheduler-class has to be set to cSync-

Scheduler in the General section. The other options are set in a section named
Sync.

Name Type Description
sync enabled boolean If “no”, the scheduler will not be synchronized and

work like a normal scheduler.
client id int A numerical identifier for the client. Must be unique

over all clients participating in the synchronization.
client description string A description string that can be used to identify the

client at the server.
sync server string The IP address of the server, in dotted decimal no-

tation.
sync server port int The port the synchronization server listens on.
sync client port int The port the synchronization client listens on.
debug boolean If “yes”, print debugging information to STDOUT

while running.
sync unit scaler double A scale factor. The time slice that is received from

the server is divided by this number. Since the syn-
chronization server described in Section A.1.1 sends
the time in µs, but OMNeT++ expects the time in
seconds, it is set to 1000000 and should generally
not be changed.

A.1.4 Emulator–Tunnel: Xen Side

The tunnel is set up by an application tap-udptunnel that expects three command
line options: First, the IP address of the endpoint of the tunnel, i.e. the computer
the simulation is running on. Second, a part number of the endpoint. Third, a
flow-id that uniquely identifies this tunnel. If there are several Xen hosts connected
to the simulation, they will all share the IP address and port endpoints, but they
will each receive a unique flow-id. As next step, a new bridge has to be created,
and the virtual interface vifN.0 corresponding to the synchronized domain has to
be bridged with the tap devices that was created by starting the tap-udptunnel

program. Finally, ARP has to be switched off on the bridge.

A.1.5 Emulator–Tunnel: OMNeT++ Side

The configuration options are spread over two files. The general options are set in
the omnetpp.ini file, in a section named cExternal-Tunnel.
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Name Type Description
tunnel enabled boolean If “no”, no functional coupling will take place.

Consequently, no communication between simula-
tion and Xen domain will be possible.

tunnel destination string The IP address of the endpoint of the tunnel, in
dotted decimal notation.

tunnel port int The port of the endpoint of the tunnel.

The flow-id, which uniquely identifies each Xen domain’s traffic, is set in the network
description file. Since each Xen domain is identified with a network node of the type
cExtHost inside the simulation (see Section 3.3), the flow-id is set as one of its
parameters with the name flowid and an integer as value.

A.2 Synchronized Network Emulation Setup

1. Boot one computer into Xen, and one computer into Linux.

2. Start the domain that is to be synchronized on the Xen computer.

3. Start the tap-udptunnel script on the Xen computer.

4. Bridge the virtual interface that belongs to the domain that is to be synchro-
nized with the newly created tap device. Do not forget to switch off ARP on
the bridge.

5. Start the synchronization server on the Linux computer (or the Xen computer,
or any other third computer).

6. Start OMNeT++ on the Linux computer.

7. Load the kernel module on the Xen machine.

8. Start the OMNeT++ simulation.
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