
Synchronized Network Emulation: Matching prototypes
with complex simulations

Elias Weingärtner, Florian Schmidt, Tobias Heer, and Klaus Wehrle
Distributed Systems Group
RWTH Aachen University

{weingaertner, heer, wehrle}@cs.rwth-aachen.de, florian.schmidt@rwth-aachen.de

ABSTRACT
Network emulation, in which real systems interact with a
network simulation, is a common evaluation method in com-
puter networking research. Until now, the simulation in
charge of representing the network has been required to be
real-time capable, as otherwise a time drift between the sim-
ulation and the real network devices may occur and corrupt
the results. In this paper, we present our work on synchro-
nized network emulation. By adding a central synchroniza-
tion entity and by virtualizing real systems for means of
control, we can build-up network emulations which contain
both unmodified x86 systems and network simulations of
any complexity.

1. INTRODUCTION
According to the evaluation in the domain of computer

networks, we either rely on network simulation or pro-
totype implementations. Network simulations consist of
virtual nodes and virtual channels over which messages
are exchanged. Common simulators, such as ns-2 [16],
JiST/SWANS [4] and OMNeT++ [18], are long-established
in the research community. Their major strength is their
flexibility: One can easily simulate a networking proto-
col and evaluate its performance in large networks with
thousands of nodes. Simulators provide a global picture
of the network and an unsurpassed degree of interactivity
as all simulation parameters can be easily modified. On
the other hand, network simulation can not entirely cope
with all requirements needed for comprehensive evaluation:
While the protocol semantics are usually well modeled,
the implementation context (e.g., influence of an operating
system and concurrent processes) is mostly disregarded or
neglected. This is especially a problem, as modern proto-
cols often show higher resource demands. For example, they
may employ heavy use of cryptography or simply require
many open connections to be maintained. Hence, in many
cases it is difficult to deduct meaningful results about the
real performance of a protocol and system related resource
requirements from a network simulation alone.

For performance evaluation under realistic conditions,
protocols are usually implemented as prototypes and inves-
tigated in a testbed of real networked systems. However,
large-scale testbeds are normally very costly and often
cumbersome to maintain. Public testbeds, most notably
PlanetLab [8], facilitate the study at a global scale, but
their lack of ability in granting exclusive access complicates

the measurement of performance footprints. In addition,
due to their shared nature, these testbeds lack flexibility be-
cause fundamentally changing the testbeds’ nodes or their
topology is not possible.

One option to bring together the flexibility of network
simulators and the precision of real systems is network em-
ulation. Real systems are connected to a simulation and
interact with a simulated network. This concept was first
introduced by Kevin Fall [9]. Nine years ago, Fall already
stated that this approach is only useful if the simulation
executes in real time, and that there was “no simple solu-
tion to this issue”: If the simulation lags behind in time,
it is unable to deliver packets in a timely manner, which
leads to artifacts such as unpredictably varying or largely
increased network latency. Such simulator overload may
arise whenever complex network simulations are used or if
large amounts of packets need to be processed by the simu-
lator. Hence, simulator overload has to be prevented by all
means because erroneous protocol behavior, such as connec-
tion time-outs, unwanted retransmissions, or the assumption
of network congestion would be straight consequences, thus
rendering measured results unusable or at least question-
able. To our knowledge no solution exists which relieves the
network simulation from being real-time capable. This is a
major constraint which hinders the evaluation of an actual
implementation against a simulated network of very high
complexity.

In this paper, we propose an approach for network em-
ulation that copes with a network simulation of any com-
plexity without risking simulator overload. As described in
Section 2, we tackle this problem with a concept called syn-
chronized network emulation. We exchange the real systems
with virtualized hosts (VHs) in order to be able to synchro-
nize their execution behavior with the network simulation.
Our VH implementation is based on Xen [3] and supports
the incorporation of any unmodified x86-operating system
running prototype implementations. As the virtualization
takes place below the operating system level, the interac-
tion of both user-land applications and system components
such as network stacks with event-driven simulations of any
complexity can be analyzed. We outline this implementa-
tion and our extensions of OMNeT++ in Section 4. Our
evaluation in Section 5 shows that we achieve synchronous
execution of the simulation and x86 machines with an accu-
racy up to 10µs and a reasonable amount of synchronization
overhead. Section 6 concludes this paper with a brief dis-
cussion.

Synchronization
CommunicationSynchronization

Component

Virtualized
Host

Virtualized
HostNetwork Simulator

Figure 1: Synchronized Network Emulation

2. SYNCHRONIZED NETWORK
EMULATION

As illustrated in Figure 1, a synchronized network emu-
lation set-up contains three different kinds of components:
The VHs and the network simulator are connected to a syn-
chronization component, which aligns the local times of the
VHs and the simulator. In this Section, we describe impor-
tant aspects and properties of the individual building blocks.

2.1 Synchronization component
The synchronization component is the central coordina-

tor which manages the synchronous execution of the sim-
ulators and the VHs attached. In order to prevent poten-
tial time drifts, the coordinator needs to implement a suit-
able synchronization algorithm. This is closely related to
the synchronization problem in the area of parallel discrete
event-based simulation [10] (PDES), where an event-based
simulation is partitioned and processed simultaneously by
multiple machines or processes. However, many of the syn-
chronization algorithms proposed for PDES rely on the abil-
ity to predict the future execution behavior of entities within
the simulation (look-ahead). Optimistic approaches, such as
time warping, use check-pointing and occasional roll-backs
in case a time drift over a certain threshold occurs. These
concepts are often well suited for event-based simulations,
but with the integration of VHs in mind, all concepts involv-
ing look-aheads and roll-backs cannot be applied because the
prediction of the their future run-time behavior is impossible
and the state-space of VHs is too large to allow fine-granular
check-pointing. To avoid the dependency on potentially er-
roneous run-time prediction, we employ conservative time
windows [13] for our purpose. The synchronization compo-
nent assigns small time-slices to VHs and the simulator. The
end of each time-slice constitutes a barrier. If the network
simulation or a VH has reached this barrier, it stops execut-
ing and notifies the synchronization component. Only when
all entities have cleared the barrier, the next time-slice is
assigned. From this it follows that the synchronization ac-
curacy is directly given by the the size of the time-slices
because the drift is bounded by the size of one time-slice.

2.2 Virtualized Hosts
From a conceptual point of view, any real system sup-

ported by a suitable virtualization environment may be inte-
grated into a synchronized network emulation set-up. In the
following, we restrict ourselves to wired networked comput-
ers which are interconnected using Ethernet. Moreover, we
consider a real system to be an ordinary x86-based machine
running an operating system such as Linux, Open Solaris or
Windows.

The virtualization of the real systems is needed to obtain
full control over their run-time behavior: First of all, the
execution of a VH needs to be stalled until the synchroniza-
tion component allocates the next time-slice. Another issue
is what we refer to as timekeeping : As the systems execution
is interrupted due to the synchronization process, we need
to avoid that the VHs perceive these gaps in time. Hence,
we need to manipulate their internal clocks to still provide
the VH with a consistent and continuous time.

With the goal of incorporating any unmodified operating
system into synchronized network emulation, we need a flex-
ible virtualization environment which provides the desired
level of control. Many System emulators and full system
simulators (Virtutech Simics, CoWare Virtual Platform) al-
ready provide the needed interfaces. However, complete sys-
tem emulation at the instruction level naturally bears a lot of
overhead, and the accuracy delivered is usually not needed,
neither for debugging nor for the analysis of network imple-
mentations. While we leave them aside for now, we expect
them to be easily adoptable for synchronized network emu-
lation.

In this paper, we investigate the utilization of virtual ma-
chine monitors, precisely the Xen hypervisor [3], for this
purpose. Xen facilitates the parallel execution of multiple
operating systems on the same physical machine, and it is
implemented as a thin layer between the system hardware
and the operating systems. Hence, it is able to control the
running behavior of any OS on top of it. As the operating
system’s code is in fact executed natively, Xen’s footprint
on performance is rather small. Since its original publica-
tion and release, Xen itself has undergone many changes and
improvements [19]. Most importantly, Xen nowadays sup-
ports the virtualization of arbitrary, unmodified x86 oper-
ating systems by means of hardware virtualization (HVM),
as supported by modern CPUs (AMD-V, and Intel-VT, re-
spectively). Further details are presented in Section 4.

2.3 Network Simulator
The network simulator’s task is to model the network

which the VHs are connected to. Following the terminol-
ogy in [9], we distinguish between opaque and protocol net-
work emulation mode. In opaque network emulation, traf-
fic is simply passed through the simulator. In this case,
the simulator merely influences the propagation of network
packets, for example by delaying packets or by simply drop-
ping frames. This approach is prevalent in many available
toolkits [1, 2, 7, 17]. We focus on the protocol mode where
the network simulation implements the communication pro-
tocols that are used by the VHs. This is required for the
implementation of simulated hosts which communicate with
the VHs attached.

For coupling the simulator and the VHs, we implemented
time synchronization in the event scheduler of the simula-
tor: Recall that an event-based network simulator maintains
a list of all scheduled events ordered by the time of execu-
tion. Usually, the simulation simply processes these events
sequentially until the event queue is empty. In synchronized
network emulation, the scheduler checks if the next event’s
time of execution resides in the current time-slice. If this is
the case, the event is executed. If not, the event scheduler
notifies the synchronization component. The next event is
processed after the barrier has been shifted past the execu-
tion time of the event.

Hardware

XenSync-EDF
Scheduler

Sync-Client
Module

Privileged
Xen

control
domain

Sy
n

ch
ro

n
iz

at
io

n
 c

o
m

p
o

n
en

t

Network
simulator

 Sync. Event
Scheduler

Virt.
Host I

Virt.
Host 2

Figure 2: System Architecture

3. RELATED WORK
Many available tools [1, 2, 7, 11, 17] share the term net-

work emulation with our work, however, they only provide
opaque network emulation. While our work mainly targets
simulations in protocol mode, we of course also support an
opaque setting, since it is merely a simpler subset of the for-
mer. Considering protocol-aware network emulation, ns-2
provides adequate extensions [9, 15]. The commercial OP-
Net modeler implements similar features [5]. However, none
of these tools copes with simulation overhead. The idea of
using Xen for network emulation has been addressed in [12],
where it is used to simulate the effects of high-speed net-
works which are faster than any available technology. In
addition, Gupta, Vishnawath and Vahdat recently proposed
the use of virtualization to reduce the amount of physical
machines needed in a testbed [11].

One way to measure the performance footprint is the use
of full system simulators like Mambo [6] or Simics [14]. They
provide highly sophisticated models for entire networked sys-
tems, thus allowing the execution of real implementations
within a simulated context. While this approach offers a
great level of possible accuracy, the instruction-level based
simulation introduces a high simulation overhead which
makes it hard to employ for the simulation of very large
networks. As an example, Windows XP needs about 40
seconds of boot-up time within our Xen-based VH imple-
mentation. However, Simics completes the same task in 335
seconds on average if executed on our evaluation machine.

4. IMPLEMENTATION
In order to investigate the concept of virtualization sup-

ported synchronized network emulation, we have implemen-
ted a toolkit consisting of three building blocks which are
jointly depicted in Figure 2: The network simulator, the
synchronization component, and the virtual host infrastruc-
ture. While the network simulator and the synchronization
component are realized as individual entities, multiple vir-
tual hosts can be run on top of one host machine that exe-
cutes our Xen-based VH core. In this Section, we describe
important issues regarding the implementation of the sys-
tem’s building blocks.

4.1 Synchronization component
The synchronization component applies the conservative

time window algorithm in a straightforward manner, syn-
chronizing the components with a packet-based blocking
technique. The challenging part of the synchronization of
the distinct components is that with increasing precision,

and therefore, smaller time-slice size a greater amount of
synchronization messages between the simulator and the
VHs is needed. Hence, we emphasize the requirement of
keeping the messaging complexity as low as possible in
order to limit the performance impact caused by message
processing. To this end, we implemented a lightweight
protocol based on UDP broadcasts for synchronizing the
simulator and the VHs.

4.2 Xen-based Virtualized Hosts
The Xen-based VH core in our implementation consists of

two major parts. On the one hand, we developed a Linux
kernel module that communicates with the synchronization
component. On the other hand, we modified the Xen ker-
nel in several ways to achieve two basic goals: To make
it possible to start and stop virtualized operating systems
(called domains in the Xen context) and let them run for
exact amounts of time. Additionally, for presenting a con-
sistent gapless time flow without interruptions to the VHs,
we modified the Xen timekeeping architecture that manages
the variables that a VH uses to determine the current system
time.

Our implementation both works with paravirtualized and
unmodified operating systems, enabling the use of closed
as well as open source operating systems for the x86 ar-
chitecture. We successfully tested a Debian-based Linux
distribution and a Windows XP operating system as VH.
This flexibility gives protocol developers the freedom to test
their protocols in the OS environment of their choice. In
the following, we present three aspects of our Xen-based
implementation: The signaling between the synchronization
component, the scheduling component, and the timekeeping
component.

4.2.1 Signaling
The sync-client module is remotely controlled by the syn-

chronization component. It runs in the Xen control domain
(see Figure 2), where it communicates with the Xen sched-
uler. This architecture integrates into the concept of a priv-
ileged Xen domain from which all administrative tasks con-
cerning the virtualization are performed. For performance
reasons, we chose to implement the sync-client module as a
kernel module.

Whenever the sync-client module receives a sync message
from the synchronization server, issuing a new time-slice,
the module instructs the scheduler to let the synchronized
domain run for the specified time. Once the slice is over,
the sync-EDF scheduler stops the VH and notifies the syn-
chronization component.

The actual network traffic between the VH and the simu-
lator is tunneled via UDP. A tap device is bridged with the
domain’s virtual network interface, and the Ethernet frames
acquired this way are packed into UDP packets and sent
directly to the simulation.

4.2.2 Scheduling
For controlling the time flow for the VHs, we extend the

“simple earliest deadline first” (sEDF) scheduler bundled
with Xen. The modified scheduler keeps track of the syn-
chronized VH and only allows it to run if it was issued a slice
from the sync-client module. If multiple VHs are synchro-
nized, they are scheduled in a strongly sequential manner in
order to prevent inaccuracies due to interweaved execution.

Xen was not built for exact time synchronization, and
hence, handles the assigned run-time inaccurately. Xen con-
siders the scheduling itself to take no time at all. As an
effect, it attributes the time spent in the scheduler to the
time-slice of the domain that is chosen for execution, which
leads to domains actually running for shorter times than
expected. This behavior produces only negligible inaccu-
racies under normal circumstances, since the time spent in
the the scheduler is disproportionally small. However, this
is not the case anymore if the execution time of a domain
is fragmented into tiny time slices for the means of accurate
synchronization: If a typical slice might be 100µs or smaller,
the time spent in the scheduler amounts to a sizable portion
of the slice. Therefore, the scheduler has to be made aware
of its own use of time, so that it can properly schedule the
domains for the desired time.

Moreover, VHs are not perfectly stable in their consump-
tion of time. For example, if a domain is scheduled to run
for 100µs, it is common to see it return to the scheduler after
99.5µs, or 100.5µs. To make sure that these errors do not
accumulate, we modified the scheduler to be self-correcting.
That way, the next slices will be set accordingly longer or
shorter to keep the average slice length close to the desired
value.

4.2.3 Timekeeping
Every operating system has several ways to measure the

passing of time that, in the non-virtualized case, are based
on hardware counters like a CPU cycle counter, or a pro-
grammable interrupt that is periodically executed and sig-
nals the passing of a predefined amount of time. In the vir-
tualized case, Xen provides the domains with virtual coun-
terparts to these hardware timing devices. We have to dis-
criminate between the two cases of a counter variable that
increases as time passes, and timer interrupts that execute
a function on expiration.

In the case of counters, we have to keep track of the differ-
ence ∆t between the VHs and the Xen counters. To provide
the VH with a consistent time, we subtract ∆t from the ac-
tual counter value whenever the VH accesses it. In the case
of periodic timers that on expiration send a “tick” signal to
the domain, we keep track of a δt that we can add to the
expiration date to ensure that the timer fires at the right
point in (synchronized) time. Timers are stopped when the
domain is de-scheduled and restarted with δt added to the
expiration date when the domain is started again.

4.3 Network Simulator Integration
As network simulator, we use the modular discrete event

simulator OMNeT++ and its INET framework. The INET
framework is a comprehensive collection of protocol mod-
els that span wired and wireless network protocols (e.g. the
parts of the IEEE 802 family including IEEE 802.11 wireless
networks, IP, TCP and UDP). With the general integration
of OMNeT++ simulations in mind, we implemented a cus-
tom event scheduler which is controlled by the synchroniza-
tion component. The scheduler controls the advancement in
the event queue and signals passed time-slice borders to the
synchronization component.

As many other simulators, OMNeT++ uses its own data
structures for packets and packet headers which are not
aligned with the network standards used in real networks.
Moreover, depending on the level of abstraction, network

simulators model protocol functionality and payload to meet
their needs, disregarding interoperability with real hosts.
Thus, when coupling VHs based on commodity operating
systems, a conversion between the formats of the network
simulator and the network packets used in real networks be-
comes necessary. Moreover, missing protocol mechanisms
need to be implemented. We extended OMNeTs protocol
conversion capabilities to serialize its internal message types
to Ethernet frames. These Ethernet frames are tunneled to
the VH using UDP. In order to facilitate the communication
between a simulated node and VH, a TAP device is used to
capture its network packets. The captured network pack-
ets are tunneled to the network simulation where a parser
converts the received Ethernet frames to OMNeT++ mes-
sages. So far, we fully support ARP, ICMP, IP and UDP as
transport protocol.

5. EVALUATION
In this Section, we provide preliminary evaluation results

regarding the precision of the time synchronization and its
impact on application-level measurements. An evaluation of
the overhead introduced by the synchronization mechanisms
concludes this Section. We used an AMD Athlon 64 PC
running at 2.4 GHz as base for our VH running our Xen-
based implementation. As Xen host system as well as for
the VHs in para-virtualized mode, we used Linux 2.6.18.8-
xen. The HVM-based VHs ran Linux with the kernel version
2.6.22-14 and Windows XP.

5.1 Timekeeping precision
The main goal of our approach is to provide a consistent

and synchronized time to all coupled components. For evalu-
ating the precision of the synchronization component, we ran
the coupled simulation for 10.000 seconds with a synchro-
nization granularity of 100µs per time-slice. As expected,
even after this prolonged period, the cumulative drift be-
tween the synchronized components is bounded by the size of
a time-slice (i.e. 100µs). Consequently, no cumulative drift
was measurable, resulting in precisely synchronized systems.

5.2 Application-level measurements
In this Section, we examine how synchronization and lack

of synchronization affect the measurements taken in an ex-
emplary test network. In the test setup, a network simula-
tion contains only one simulated host, and is connected to
one VH. We artificially slowed down the execution speed of
the simulation for generating overload conditions. We first
measured the impact of the synchronization on the network
delay perceived by the VHs. For all delay measurements
we measured 3500 ICMP Echo Request round-trip times
(RTTs), more often referred to as “pings”, between the VH
and the network simulation. In the synchronized case, the
duration of each time-slice was set to 100µs. As a basis for
comparison, we depict measurements between two directly
connected Linux hosts in Figure 3(a).

Figure 3(d) depicts a histogram of the RTT without syn-
chronization. In this case, the simulation overhead leads to
unusable results because the perceived RTTs exhibit an un-
realistic delay and distribution due to the slow processing of
the simulator. If we synchronize the VH and the network
simulation, we obtain RTTs in the right order of magnitude,
as depicted in Figure 3(c). In the case of paravirtualization,
it is noteworthy that the bulk of the round-trip times fall

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

packet RTT [ms]

0

100

200

300

400

500

600

700

800

900

c
o
u
n
t

(a) RTTs for two Linux PCs

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

packet RTT [ms]

0

100

200

300

400

500

600

700

800

900

c
o
u
n
t

(b) RTTs between a hardware virtualized Linux VH
and a simulation

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

packet RTT [ms]

0

100

200

300

400

500

600

700

800

900

c
o
u
n
t

(c) RTTs between a paravirtualized Linux VH and a
simulation

0 5000 10000 15000 20000 25000 30000 35000 40000

packet RTT [ms]

0

10

20

30

40

50

60

70

c
o
u
n
t

(d) RTTs corrupted by unsynchronized and over-
loaded simulation

Figure 3: RTT histograms of 3500 echo replies.

into an interval between 120µs and 220µs. While this is on
average slightly higher than in the comparison case shown in
3(a), it corresponds closely to the chosen time slice of 100µs.
A small amount of RTTs takes longer, up to one more time
slice, i.e. until 320µs. Interestingly, a few RTTs are lower
than the lowest ones in the comparison case. This can be ex-
plained by the fact that on occasion, an echo request will be
sent out just before the barrier time is reached. The packet
then travels on the wire while the VH is waiting for the next
time slice assignment, and will appear to the VH to have
traveled instantly.

Figure 3(b) shows the RTTs for a hardware virtualized,
synchronized Linux VH. While the graph is similar to Fig-
ure 3(c), the measured round trip times are generally higher.
However, hardware virtualized VHs in Xen always suffer
from some performance degradation. In the HVM mode,
all I/O operations are fully emulated. Hence, additional
overhead is introduced compared to paravirtualized VHs
which directly access I/O data using shared memory pages.
The slightly inferior performance is therefore to be expected.
Nonetheless, the results are still close to the ones in set-up
in Figure 3(a), and in any case much more meaningful than
Figure 3(d). From these results we conclude that synchro-
nized network emulation is able to produce realistic results
related to the timing behavior of protocols, even if the sim-
ulation suffers from high overload.

5.3 Synchronization Overhead
In order to quantify the overhead introduced by the syn-

chronization at the VH, we assigned 600 seconds of running
time using our synchronization component. We ran this ex-
periment using time-slices of different sizes and calculated
the ratio between assigned and actually consumed time. Fig-
ure 4 shows these ratios for time-slices at different sizes, both

 1

 2

 3

 4

 5

 6

 7

 8

 0.01 0.1 1 10 100

ov
er

he
ad

 r
at

io

slice size [ms]

1 VH: paravirtualized Linux
1 VH: hardware virtualized Linux

1 VH: hardware virtualized Windows XP
2 VHs: paravirtualized Linux

2 VHs: hardware virtualized Linux
2 VHs: hardware virtualized Windows XP

Figure 4: Synchronization overhead vs. accuracy

for VHs using para-virtualization and HVM mode. Recall
that the synchronization accuracy corresponds to the size
of a time-slice. Most notably, the synchronization overhead
remains stable for time-slices greater than 0.1ms.

Even at an accuracy level of 10µs, the overhead ratio for
one VH instance remains below 5 for all types. Hence, the
additional overhead introduced is below the factor of 4 for
a time-slice of 10µs in this case. Furthermore we emphasize
that the ratios of the para-virtualized and the HVM-based
VH instances differ slightly, and that the choice of operating
system has practically no influence. If the Xen implementa-
tion is used to execute two VHs at the same time, the over-
head increases in a proportional manner. As HVM-based
VHs are able to put any unmodified x86 operating system
into execution, these performance measures clearly demon-
strate the feasibility of such an incorporation even at higher
levels of accuracy. All in all, the results suggest that our
Xen-based VHs will not become the performance bottleneck
in synchronized network emulation set-ups if the simulation
is reasonably complex.

6. CONCLUSION
In this paper, we have introduced the concept of efficient

synchronized network emulation by means of virtualization.
Using virtualized hosts and a central synchronization com-
ponent, we are able to cope with network simulations of
arbitrary complexity.

Even when synchronizing one VH at an accuracy of 10µs,
the additional overhead introduced remains below a factor of
4 compared to a non-synchronized emulation scenario, and
drops to about 24% for slices of 1ms. Hence, coupling com-
plex simulation with VHs facilitates detailed investigations
of protocols in their genuine context (real operating systems,
practically deployed protocol stacks etc.) with a compara-
tively low overhead, reducing hardware requirements and
increasing run-time performance. With time-slices sufficient
for simulating end-to-end Internet traffic, even applications
that require user-interaction can be subject to synchronized
network emulation, enabling the evaluation of a protocol’s
impact on the perceived system performance.

In conclusion, synchronizing network emulation is a fea-
sible approach, and it opens up new ways of network anal-
ysis. On the one hand, even closed-source binaries (e.g.,
operating systems, proprietary protocols, and applications)
can be analyzed with the versatility of a simulator with-
out being limited to real-time capable simulations. On the
other hand, synchronized networks can be evaluated based
on accurate end-host behavior without using static traces,
statistical traffic patterns, or simplified models. We there-
fore anticipate synchronized network emulation becoming an
important tool in network analysis.

Acknowledgments
We thank our anonymous reviewers whose comments helped
to improve this paper. We also express our gratitude to Si-
mon Rieche, Olaf Landsiedel, Stefan Götz and Hamad Alizai
for supportive comments and discussions.

7. REFERENCES
[1] M. Allman and S. Ostermann. ONE: The Ohio

Network Emulator. Technical Report TR-19972, Ohio
University, Aug. 1997.

[2] M. Avvenuti and A. Vecchio. Application-level
network emulation: the emusocket toolkit. Journal of
Network and Computer Applications, 29(4):343–360,
2006.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP’03), pages 164–177, Bolton
Landing, NY, USA, Oct. 2003. ACM.

[4] R. Barr, Z. J. Haas, and R. van Renesse. JiST: an
efficient approach to simulation using virtual
machines. Softw, Pract. Exper, 35(6):539–576, 2005.

[5] E. Biegeleisen, M. Eason, C. Michelson, and R. Reddy.
Network in the loop using HLA, distributed OPNET
simulations, and 3D visualizations. In Military
Communications Conference, 2005. MILCOM 2005.
IEEE, volume 3, pages 1667–1671, Oct. 2005.

[6] P. Bohrer, M. Elnozahy, A. Geith, C. Lefurgy,
T. Nakra, J. Peterson, R. Rajamony, R. Rockhold,
H. Shafi, R. Simpson, E. Speight, K. Sudeep, E. van
Hensbergen, and L. Zhang. Mambo: a full system
simulator for the PowerPC architecture. ACM
SIGMETRICS Performance Evaluation Review,
31(4):8–12, 2004.

[7] M. Carson and D. Santay. NIST Net: a linux-based
network emulation tool. ACM SIGCOMM Computer
Communication Review, 33(3):111–126, 2003.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An
Overlay Testbed for Broad-Coverage Services. ACM
SIGCOMM Computer Communication Review,
33(3):3–12, 2003.

[9] K. R. Fall. Network emulation in the Vint/NS
simulator. In Proceedings of the 4th IEEE Symposium
on Computers and Communication, pages 244–250.
IEEE Computer Society, 1999.

[10] R. M. Fujimoto. Parallel discrete event simulation.
Communcations of the ACM, 33(10):30–53, 1990.

[11] D. Gupta, K. V. Vishwanath, and A. Vahdat.
DieCast: Testing distributed systems with an accurate
scale model. In Proceedings of the 5th USENIX
Symposium on Networked System Design and
Implementation (NSDI’08), San Francisco, CA, USA,
2008. USENIX Association.

[12] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren,
A. Vahdat, and G. M. Voelker. To infinity and beyond:
time-warped network emulation. In Proceedings of the
3rd USENIX Symposium on Networked Systems
Design and Implementation (NSDI’06), pages 87–100,
Berkeley, CA, USA, 2006. USENIX Association.

[13] B. D. Lubachevsky. Efficient distributed event-driven
simulations of multiple-loop networks.
Communications of the ACM, 32(1):111–123,131,
1989.

[14] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. H̊allberg, J. Högberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58,
2002.

[15] D. Mahrenholz and S. Ivanov. Real-time network
emulation with ns-2. In Proceedings of the 8th IEEE
International Symposium on Distributed Simulation
and Real-Time Applications (DS-RT), pages 29–36.
IEEE Computer Society, 2004.

[16] The network simulator ns-2.
http://www.isi.edu/nsnam/ns/.

[17] L. Rizzo. Dummynet: A simple approach to the
evaluation of network protocols. ACM Computer
Communication Review, 27(1):31–41, 1997.

[18] A. Varga and R. Hornig. An overview of the
OMNeT++ simulation environment. In Proceedings of
the First International Conference on Simulation
Tools and Techniques for Communications, Networks
and Systems (SIMUTools 2008’), Marseille, France,
March 2008.

[19] Xen hypervisor project. http://www.xen.org/.

http://www.isi.edu/nsnam/ns/
http://www.xen.org/

	Introduction
	Synchronized Network Emulation
	Synchronization component
	Virtualized Hosts
	Network Simulator

	Related Work
	Implementation
	Synchronization component
	Xen-based Virtualized Hosts
	Signaling
	Scheduling
	Timekeeping

	Network Simulator Integration

	Evaluation
	Timekeeping precision
	Application-level measurements
	Synchronization Overhead

	Conclusion
	References

