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Abstract
Video streaming dominates the Internet’s overall traffic mix,
with reports stating that it will constitute 90% of all con-
sumer traffic by 2019. Most of this video is delivered by
Content Delivery Networks (CDNs), and, while they opti-
mize QoE metrics such as buffering ratio and start-up time,
no single CDN provides optimal performance. In this paper
we make the case for elastic CDNs, the ability to build vir-
tual CDNs on-the-fly on top of shared, third-party infrastruc-
ture at a scale. To bring this idea closer to reality we begin
by large-scale simulations to quantify the effects that elastic
CDNs would have if deployed, and build and evaluate Mini-
Cache, a specialized, minimalistic virtualized content cache
that runs on the Xen hypervisor. MiniCache is able to serve
content at rates of up to 32 Gb/s and handle up to 600K re-
qs/sec on a single CPU core, as well as boot in about 90 mil-
liseconds on x86 and around 370 milliseconds on ARM32.

1. Introduction
Video streaming is nowadays the Internet’s killer app: re-
ports state that it will account for up to 90% of all consumer
traffic by 2019, with most of this content delivered via Con-
tent Delivery Networks (CDNs) [9].

CDNs do a great job of improving important user ex-
perience metrics such as buffering times, video quality and
buffering ratios, but depending on features such as the region
of the world that the client is in, time of the day, or the over-
all volume of requests (including overload conditions such
as flash crowds), a particular CDN may not provide the best
service possible. A recent measurement study of 200 million
video sessions confirms this, stating that more than 20% of
sessions had a re-buffering ratio greater than 10% and more
than 14% had a startup time greater than 10 seconds [26].
These amounts matter: in [10], the authors report that a 1%
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increase in buffering can reduce viewing time by more than
3 minutes.

These performance shortcomings have prompted a num-
ber of works on CDN multi-homing (i.e., using multiple
CDNs in order to improve video QoE and to reduce pro-
visioning costs), including proposals for building CDN con-
trol planes [19, 26]. The authors of [26], in particular, point
out that simply by choosing CDNs more intelligently, the re-
buffering ratio can be reduced by a factor of two. Further
work states that multi-homing can reduce publishing costs
by up to 40% [25], and that federated CDNs would do so by
95% [5].

All of this work constitutes a big step in the right direc-
tion, showing, among other things, that the more choice in
terms of delivery sites, and the more a CDN can dynami-
cally react to changing loads, the better the quality of video
delivery and the lower the costs. Thankfully, there are a num-
ber of trends that can make a larger range of network sites
available for video delivery:

• Micro Datacenters. A number of major network opera-
tors are deploying micro-datacenters (e.g., a rack of com-
modity servers) at Points-of-Presence (PoPs) in their net-
works, initially to run their own services but in the longer
run to rent this infrastructure out to third parties [16].

• Mobile Edge Computing. A recent ETSI white pa-
per [15] calls for the deployment of servers at the edge of
the network, in RANs (Remote Access Networks) next
to base stations and radio network controllers. Big play-
ers such as Intel are also getting in on the act, arguing
for deployment of servers in so-called “smart cells” [21].
Along this trend, a survey of 2,000 telco industry pro-
fessionals states that 75% of respondents consider video
content streaming as one of the most lucrative LTE ser-
vices [49].

• Federated CDNs aim to combine CDNs operated by var-
ious telecom operators to be able to compete with tra-
ditional CDN companies such as Akamai, Limelight or
MaxCDN [37, 42, 44]. There are even brokers bringing
together infrastructure providers and (virtual) CDN oper-
ators [41], and the same survey cited above reports that



50% of respondents stated that video delivery would be
the first network function they would virtualize [49].

• Public Clouds can be leveraged to deliver content. Net-
flix, for instance, uses Amazon Web Services for both
services and delivery of content [3].

• Pay-as-you-go CDNs such as Amazon’s CloudFront [4],
Akamai’s Aura [2] or Alcatel-Lucent’s Velocix [52] pro-
vide additional deployment sites.

Given this landscape, we ask a simple, key question: can
such infrastructure be leveraged to improve the performance
of video delivery, and if so, what would the quantitative ef-
fects of doing so be? Beyond this, we make the case for
elastic CDNs: the ability to build large-scale live stream-
ing and VoD (Video on Demand) virtual content distribu-
tion networks on shared infrastructure on-the-fly. Such vir-
tual CDNs (vCDNs) could be built to deliver a single piece
of content like a live event or a VoD series episode, could
take into account parameters such as users’ geographical lo-
cations (e.g., ensuring that there’s always a cache nearby)
and demand (e.g., scaling the number of caches in a par-
ticular high-load location), and could be quickly adapted as
these vary throughout the lifetime of the stream.

We believe this would bring benefits to a number of play-
ers. End users would see improvements in video quality
(e.g., better start times and buffering ratios); CDN operators
could expand their service to cope with fluctuations in load
and demand from specific regions by dynamically building a
vCDN to complement their existing infrastructure; and net-
work operators would derive additional revenue from acting
as CDN operators and from renting out their infrastructure.

Towards the vision of elastic CDNs, we make a number
of specific contributions:

• The development of CDNSim, a custom-built simulator
targeting CDN simulations.

• Large-scale CDN simulation results showing what the
effects of elastic CDNs would be if deployed, as well
as what system requirements they would impose on the
caches serving the content.

• The implementation and evaluation of MiniCache, a vir-
tualized, specialized, high performance content cache
that runs on Xen. MiniCache runs on top of the mini-
malistic MiniOS [56] operating system. MiniCache can
be instantiated in 90 milliseconds on x86, serve video at
rates of 32 Gb/s and handle up to 600 reqs/sec on a single
CPU core.

• A number of optimizations to Xen including a fast I/O
mechanism called persistent grants that does not require
modifications to guests; and improvements to MiniOS
and lwIP.

We released the code used in this paper as open source at
https://github.com/cnplab.1

The rest of the paper is organized as follows. Section 2
outlines the requirements for an elastic CDN on a systems
level. In Section 3, we quantify the large-scale effects that
elastic CDNs could have if deployed, from which we also
derive performance requirements for such systems. Section 4
explains MiniCache’s architecture. We present a thorough
evaluation of the different building blocks of MiniCache in
Section 5. In Section 6, we discuss several points relating to
unikernels in general and MiniCache in specific. Finally, we
review related work in Section 7 and conclude the paper and
present an outlook for potential future work in Section 8.

2. System Requirements
Our high-level goal is to be able to build on-the-fly, virtual
CDNs on third-party, shared infrastructure for video stream-
ing. In greater detail, we would like to quickly instantiate vir-
tualized content caches on servers distributed close to video
consumers, in essence dynamically generating overlay mul-
ticast video streaming trees.

To achieve this, each cache should be able to download
content from an origin server or an upstream cache, cache
the content, and serve it to any number of clients or down-
stream caches. Before going into implementation details,
however, we first define a number of basic requirements:

Wide deployment: MiniCache strives to leverage as many
deployment sites and infrastructure as possible by running
on a number of different platforms (from powerful x86
servers all the way down to resource-constrained, ARM-
based microservers).

Strong Isolation: Each server will be potentially multi-
tenant, running concurrent instances of content caches be-
longing to different commercial entities. Isolation is thus
needed to ensure the integrity of applications, system code,
clients’ content, as well as their private keys.

Fast scale out/in: The system should be able to scale to
quickly build vCDNs according to demand, and to adapt to
changing conditions (e.g., flash crowds as happened with the
release of Apple’s iOS 8 [46], a sudden increase in demand
from a particular region as in local sport events [5], or a high
decay rate in required volume when interest in content such
as news stories wanes [5]).

High consolidation: The more MiniCache instances we can
concurrently fit on a given server the better suited the system
will be for infrastructure providers. Because MiniCache is
specialized and based on minimalistic OSes it has a small

1 The persistent grants mechanism is available at http:

//lists.xenproject.org/archives/html/xen-devel/2015-

05/msg01498.html



Requirement How Addressed
Wide deployment Support for x86, ARM, Xen, Mini-

OS.
Strong isolation Use of hypervisor technologies.
Fast scaling Optimized boot (< 100 ms) and de-

stroy times.
High consolidation Specialization allows running of up

to 250 concurrent instances.
High HTTP perfor-
mance

Optimized packet I/O, file access,
network and block drivers.

Support kernel/stack
optimization

MiniCache’s upper layers can run
on different kernels (in our case
MiniOS and Linux).

Table 1: Requirements in support of elastic CDNs and how
MiniCache addresses each of them.

memory footprint (2MB in the base case), meaning that
memory-constrained servers can still support many concur-
rent instances. Clearly memory is not the only requirement;
in Section 5 we evaluate other metrics such as throughput
and number of requests as the number of instances increases.

High HTTP performance: CDN caches have to cope with
a large number of requests per second, many simultane-
ous connections, and high cumulative throughput, especially
for high definition video such as Netflix’s 6Mb/s SuperHD
streams [18]. We optimize various portions of MiniCache
and its underlying systems in order to match these require-
ments.

Support for kernel and network stack optimization:
To achieve high throughput between caches (and between
caches and origin servers), many of the major CDN oper-
ators use optimized transport stacks and/or kernel settings.
For example, Netflix uses optimized TCP settings, and sup-
port for in-kernel TLS [47]; Akamai uses custom TCP con-
nection control algorithms [39].

Table 1 gives an overview of how MiniCache addresses
each of these high-level requirements. In the next section
we introduce results from large-scale CDN simulations to
further quantify some of these.

3. CDN Simulations
Before we present results from MiniCache, our virtualized
content cache, we carry out a number of large-scale CDN
simulations. The aim is two-fold: to quantify what benefits
elastic CDNs would have on end user QoE metrics, and
to provide quantitative performance requirements for Mini-
Cache.

3.1 CDNSim
In order to obtain realistic results, we would like to be able
to carry out large-scale CDN simulations using Internet AS

Country Total ASes Content Transport Access
United States 14,470 1,148 2,987 10,355
Germany 1,187 239 360 588
Russia 4,261 172 1,797 2,292
France 705 160 236 309
Spain 369 54 146 169
South Korea 97 5 45 47

Table 2: Number of ASes of different types for a number of
different countries.

topologies and sizable number of users (e.g., up to 1 mil-
lion). Unfortunately, existing simulators cannot cope with
this sort of scale. For example, with ns-3 [38], a state-of-the-
art network simulator, a topologically simple star topology
comprising 1000 hosts sending data over TCP at 10 Mb/s
took more than 16 hours for 60 seconds of simulation time
on a machine with an Intel Xeon E3-1620 v2 3.7 GHz CPU
and 16GB of RAM, a simulation overhead of 100,000%.

Hence, we opted for writing CDNSim, a custom-built,
flow-level CDN simulator. CDNSim creates its network graph
from a file containing an AS-level topology, in our case the
Internet’s topology obtained from the Internet Research Lab
(IRL) [22]; the simulator uses that same dataset to assign
IP address prefixes to ASes and performs longest-prefix
matching when forwarding. In addition, CDNSim provides
the ability to distinguish between content ASes which pro-
vide content, transit ASes which relay it, and access ASes
from which users consume content and which are potential
sites for content cache deployment [27]. In our simulations
we use CAIDA’s AS ranking [7] to assign one of these roles
to each AS.

With this in place, CDNSim (1) generates requests from
end users towards content caches and (2) measures, for each
end user, a number of QoE metrics. Regarding the former,
the simulator generates requests based on a Zipf distribution.
For each request, CDNSim selects a piece of content (e.g., a
live stream), chooses a video quality for it, and how long the
user will watch it for (these choices can be done based on
different distributions).

Regarding per-user measurements, CDNSim keeps track of
a number of standard video QoE metrics: start time, the time
between the video player initiating a request and the moment
its buffer is filled up so that it can start playback; buffer-
ing ratio, the fraction of total session time spent buffering;
buffering event rate, the number of playback interruptions
due to buffer under-runs; and playback ratio, the ratio of
download rate to the video codec’s rate (1 being the opti-
mal), and hence a metric of time the user wastes waiting.

Finally, CDNSim supports both a cooperative (i.e., on a
cache miss, content is fetched from an upstream cache) and
a non-cooperative caching approach (on a miss, content is
fetched from the origin server).
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Figure 1: Per-VM CDFs of throughput (a) and number of concurrent connections (b); and per-AS CDFs of throughput (c),
number of concurrent connections (d) and number of concurrent VMs (e).
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Figure 2: QoE metrics when varying the boot times of virtualized caches. Lower boot times improve QoE.

3.2 Simulator Setup
Regarding link speeds, we assign 40 Gb/s to transit–transit
and transit–content links, 10 Gb/s for access AS links, and
25 Mb/s for end-user connections into their access ASes. The
last speed is chosen as the Netflix-recommended [36] line
speed for 4K video, and thus makes sure our results are not
skewed by congestion on end-user links.

Throughout this section we simulate 1 million users and
apply a Gamma-distributed arrival time, leading to a peak of
approximately 100K concurrently active connections. As a
point of reference, Rutube, one of the largest video-hosting
services in Russia, claims to serve up to 65K concurrent
live streams [45]; we thus believe the simulations are able
to model large-scale effects.

Further, we simulate 200 available video channels (for
comparison, [8] cites 150 for a large IPTV system). End
users are assigned a video quality from the following list
according to a Poisson distribution: 360p (1 Mb/s), 480p
(2.5 Mb/s), 720p (5 Mb/s), 1080p (8 Mb/s), 2K (10 Mb/s), or
4K (20 Mb/s). Session times for each user follow a triangu-
lar distribution between 1 minute and 1 hour. For simplicity,
we use a non-cooperative caching approach as does Aka-
mai [54].

Finally, it is worth noting that due to the large size of
the Internet’s AS topology (about 49K ASes), we focus
on country-level subsets for our simulations. This choice
should not overly affect our results since a CDN’s reliance
on geolocation means that content distribution is in any case
typically constrained to a single country.

3.3 Simulation Results
In these simulations we try to answer two main questions:
(1) how much load (in terms of throughput and connections)
is put onto the caches, and (2) how does cache boot-up time
influence user experience? Throughout, we use the term VM
to mean a virtualized content cache instance.

3.3.1 Content Cache Loads
To answer the first question, we simulated several countries’
AS networks (cf. Table 2). Note that while AS numbers vary
by a factor of 150, the population difference is less than a
factor of 7, which justifies our choice of always using the
same number of users (1 million) in all experiments.

All plots presented in Figure 1 show a common theme:
the lower the number of ASes, the higher the demand on
each AS and VM. Since more users necessarily share the
same AS, the first observation is immediately clear; and
since there is always only one VM per stream per AS, load
on each VM also naturally increases as the number of access
ASes decreases.

Figures 1(a) and 1(b) show the load on the VMs. While
throughput is below 100 Mb/s and 10 concurrent connec-
tions for the large majority of VMs, those that serve popular
content have to deal with up to 1,000 concurrent connections
and 10 Gb/s throughput.

Further, Figures 1(c) and 1(d) show the aggregated load
of all VMs inside each AS. The large majority of ASes
experiences a combined throughput of less than 10 Gb/s. In
the South Korea case, approximately 70% of all ASes see



less than 40 Gb/s, with the top AS showing a rate of about
200 Gb/s.

Finally, Figure 1(e) tells us how many concurrent VMs
each AS needs at peak time. Even countries with many ASes
occasionally see more than 50 concurrent streams, that is,
VMs. In the case of South Korea, more than half of all ASes
have more than 150 VMs, with a peak of 200.

3.3.2 Boot Times and QoE Metrics
To answer the question of how boot times affect end-user
QoE metrics we carry out simulations with different VM
boot times. For the topology we pick Germany as a middle-
of-the-road setup in terms of number of ASes.

From Figure 2 it is immediately obvious that boot times
have a significant impact on QoE parameters: longer boot
times mean requests end up going to the origin server, caus-
ing congestion in the content AS or backbone and resulting
in longer start-up times and frequent buffering events. In all,
we see significant gains when the VMs can boot in under one
second, with somewhat smaller gains for 500 ms and 100 ms
boot times.

3.4 Summary of Requirements
In the ideal case, a virtualized cache should be able to cope
with rates of about 10 Gb/s, 1,000 concurrent connections
and boot times in the range of 100 ms to 1 sec. At the AS-
level, a vCDN needs to deal with up to 200 Gb/s, 10,000
concurrent connections and up to 200 simultaneous VMs
(i.e., different video channels). It is worth noting that while
clearly a single cache need not meet AS-level requirements
on its own since we can always scale its performance out by
adding more servers, a well-performing cache means savings
in terms of number of servers/investment. In the evaluation
section we discuss how MiniCache meets these requirements
and how many such caches are needed to cover even the most
stringent of ASes.

4. Architecture and Implementation
One of the basic requirements for MiniCache is to be able to
provide strong isolation to support multi-tenancy on third-
party infrastructure. This naturally points to a virtualization
technology, but which one should be used? We rule out
containers because (1) the number of security issues [11]
related to the fact that they put the entire kernel in the trusted
computing base make them less than ideal for multi-tenant
environments and (2) they violate our requirement to support
customization of kernels and some implementations do not
support running customized network stacks (e.g., Docker);
as a result, we opt for a hypervisor-based solution. However,
regular VMs are also not an option because they are too
heavy-weight, requiring too much memory and taking too
long to boot. In order to support high density, elasticity, and
efficiency we employ the unikernel approach.
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Figure 3: MiniCache architecture showing new components,
optimized ones and unmodified ones.

4.1 Overall Architecture
At a high level, MiniCache consists of content cache code
(e.g., an HTTP server, a filesystem) on top of a unikernel,
that is, a minimalistic operating system. We choose this type
of OS since it provides a number of advantages. First, uniker-
nels are single process and single address space, meaning
that there is no kernel/user-space divide, and so no expen-
sive system calls. Second, they typically use a co-operative
scheduler, avoiding context switch overheads. Finally, since
they tend to be minimalistic, they provide a good basis for
building MiniCache instances that can be spun up quickly
and that have a low memory footprint.

Figure 3 shows MiniCache’s overall architecture, includ-
ing which components we developed from scratch and which
we modified. As a base for our unikernel, we leverage Mini-
OS [56], a minimalistic, paravirtualized OS distributed with
the Xen sources. MiniOS presents a POSIX-like API, which,
coupled with the fact that we compile it with newlibc and
lwIP (a small, open source TCP/IP stack for embedded sys-
tems), allows applications written in C/C++ to be compiled
into a single VM image.

To perform head-to-head comparisons against existing
HTTP servers (e.g., nginx, lighttpd) running on Linux,
we develop Tinyx. Tinyx consists of a stripped down Linux
kernel (1.4MB compressed) along with a minimalistic dis-
tribution containing only busybox and the HTTP server. For
the kernel we use the allnoconfig make target and dis-
able modules. We further remove all drivers except those re-
quired on the test machines, which includes network adapter
drivers and a few drivers for Xen’s paravirtualized devices
(e.g., netfront, blkfront).

4.2 Cache Node Components
In terms of the content cache code (i.e., the application),
MiniCache has a number of components. First, the actual
cache is based on SHFS, our purpose-built, hash-based file
system optimized for performing look-ups of content files
based on their IDs. SHFS operates like a key–value store,
has a flat hierarchy (no folders) and is organized into multi-
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Figure 4: MiniCache HTTP server architecture. The server
can serve content from local storage in which case it uses
one ring per HTTP client (a). If serving from an upstream
source (b), it clones the stream to multiple clients using one
ring per incoming stream.

block, 4–32 KiB chunks, configurable at format time. A hash
digest (SHA, MD5, or a user-provided function) is used as
the file’s name, and the filesystem’s meta data is organized
in a hash table. This table is loaded into memory at mount
time. In addition, SHFS supports concurrent accesses from
multiple readers and includes a block cache that helps speed
up accesses. Finally, SHFS includes support for keeping
per-file content cache statistics such as hit/miss counts, last
access timestamps and download progress as a percentage of
total file size.

The second component is the MiniCache HTTP server,
which is implemented on top of SHFS’ block cache, lever-
ages lwIP’s callback-based raw API and uses the Joyent
HTTP parser [23]. When a client sends an HTTP request,
the server parses the hash digest of the requested object and
uses this ID to perform an SHFS file open (essentially a ta-
ble lookup). If an object exists, the server next checks if its
type is “file” or “link”. For the former, this means that the
object can be found locally, and so a read request is issued to
the SHFS block cache, which may, in turn, have to perform
a read from a physical storage device (Figure 4). For the lat-
ter, a TCP connection is set-up to an upstream node (another
cache or origin server) and the object is streamed down.

Stream cloning (copying an incoming stream into mul-
tiple outgoing ones) is supported by using a common ring
buffer per incoming stream, and keeping two pointers per
requesting client, one to the last buffer ACKed and another
one to the next buffer to be sent (Figure 4). In addition, it is
worth noting that the HTTP server supports zero-copy from
content buffers all the way to the sending of TCP packets by
having lwIP packet buffers directly reference SHFS cache
buffers or stream ring buffers.

The third component is a stripped-down HTTP client that
is used to download content from upstream caches and/or
origin servers. Finally, we also implemented µSH, a simple
shell that allows the CDN operator to control the cache node
(e.g., to insert and delete objects and to retrieve statistics
about them).

Taken together, these tailored components constitute
∼9,700 LoC (SHFS is ∼3,700, the HTTP server and client
code ∼4,800 and µSH ∼1,200).

4.3 Xen, MiniOS and lwIP Optimizations
As brief background, a typical Xen deployment consists of
the hypervisor and a privileged virtual machine called do-
main0 or dom0 for short. In essence, dom0 is used as a man-
agement domain (e.g., to create and destroy VMs) and as a
driver domain, meaning that it contains device drivers and
the back-end software switch used to connect network de-
vices to VMs. Further, Xen uses a split-driver model: a back-
end driver (i.e., netback, blkback) runs in the driver do-
main, and the other domains/guests implement a hardware-
agnostic front-end driver (i.e., netfront, blkfront). On
the control side, Xen relies on the XenStore, a proc-like
database containing information about VMs such as virtual
interfaces and which CPUs they run on; and the toolstack,
which along with the xl command-line tool, provides users
with a control interface. We optimize a number of these com-
ponents as well as the OS and network stack that MiniCache
uses:
Persistent Grants: Xen uses grants to allow inter-VM mem-
ory sharing, a mechanism used for, among other things, shar-
ing buffer rings to perform network and block I/O between a
guest and the driver domain. By default, a grant is requested
and mapped and unmapped for every transaction, an expen-
sive operation which requires a hypercall (essentially a sys-
tem call to the hypervisor) and causes a TLB shootdown in
the unmap operation which heavily decreases throughput.
We implement persistent grants in the network drivers (i.e.,
netback, and Linux’s and MiniOS’ netfront) as well as
the MiniOS block frontend driver (i.e., blkfront). In Linux,
the block frontend and backend drivers are already able to
utilize persistent grants. We have also submitted the imple-
mentation of persistent grants for the network drivers to the
Linux kernel while keeping MiniOS’ netfront backwards
compatible.
MiniOS: Our MiniOS netfront driver’s implementation of
select/poll uses a busy-poll approach which is inefficient
in terms of CPU usage. Instead, we improve select/poll

by switching to a sleep model and by polling only on active
devices, rather than adding all MiniOS devices to select’s
read/write file descriptors. These changes improve CPU us-
age without overly affecting throughput. Further, we port
DPDK’s [12] implementation of the memcpy function, which
uses SSE4/AVX instructions, to MiniOS.
TSO/LRO and checksum offloading: Modern NICs imple-
ment a number of offloading features to reduce CPU us-
age. To exploit these features in MiniOS, we extended its
netfront driver so that it exports capability of TCP Seg-
mentation Offload (TSO) and Large Receive Offload (LRO).
Thus, MiniCache’s TCP/IP stack can send larger IP pack-
ets (e.g., 64 KB) which are split into MTU-sized packets by
the physical NIC at the backend. We also implemented sup-
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Figure 5: HTTP serving performance in (a) reqs/sec and (b) throughput of MiniCache compared to nginx and lighttpd on
various platforms over 40 Gb/s NICs, using a single VM. In the legend, D=Debian, T=Tinyx, M=MiniCache; L=lighttpd,
N=nginx.

port for checksum offloading which is a necessary part for
TSO. Linux’s netfront and netback drivers already sup-
port both acceleration features.
Hotplug binary: To further optimize MiniCache on Xen
we introduce a hotplug binary that replaces the script in
charge of attaching virtual interfaces to the back-end soft-
ware switch. This change is transparent to guests.
Toolstack and XenStore: We leverage both the optimized
Xen toolstack described in [31] which minimizes the num-
ber of per-guest XenStore entries, and the minimalistic Xen-
Store also presented in that work. These changes are trans-
parent to guests as well.

4.4 ARM Port
Video content is increasingly being accessed from mobile
devices so that, as mentioned in the introduction, it would be
ideal to be able to deploy content caches in edge/RAN net-
works, potentially at sites that have space and/or power con-
straints. To this end, we leverage microservers (i.e., single-
board PCs such as the Raspberry Pi), since their small phys-
ical size, low cost (typically $50–$200) and low energy con-
sumption (many of them do not even have active cooling)
make them ideally suited for our purposes.

We ported MiniCache to the ARM architecture (on Xen),
and in particular to the Cubietruck (ARM Cortex A7 dual
core CPU, 2GB DDR3 RAM and 1Gb Ethernet, $100), an
attractive offering in terms of CPU power, cost and power
consumption. While we settled on the Cubietruck for this
paper, in principle MiniCache could run on a number of
other ARM-based platforms such as the Raspberry Pi 2 and
the Odroid-XU3 (and of course x86 ones such as the Intel
NUC or the Gizmo 2).

In greater detail, we first took the MiniOS ARM port
described in [29]. To get MiniCache to compile on Mini-
OS, we modified a number of compilation flags, had to
fix types definitions, and enabled newlibc’s heap allocator.
Additionally, we added the ability to receive boot arguments
from the DTB (Device Tree Binary), a mechanism we use

for setting a MiniCache VM’s IP address and instructing it
to mount an SHFS volume, among other things.

5. System Evaluation
In this section we provide a thorough evaluation of Mini-
Cache to check whether it meets the requirements outlined
in Table 1 and in Section 3. In particular, we look at (1) TCP
and HTTP performance (both throughput and number of re-
quests per second), (2) SHFS and block I/O performance, (3)
boot times and (4) VM image size and memory consump-
tion.

For x86, we conducted all evaluations on a server with a
Supermicro X10SRi-F server board, a four-core Intel Xeon
E5 1630v3 3.7GHz processor, 32GB of DDR4 RAM split
across four modules, and a Mellanox ConnectX-3 Ethernet
card to carry out experiments up to 40 Gb/s. For ARM we
rely on a Cubietruck with an Allwinner A20 SoC containing
a dual-core ARM Cortex A7 1GHz, 2 GB DDR3 RAM, and
a 1 Gb/s Ethernet interface.

5.1 HTTP Performance
We begin by evaluating the network performance with re-
gard to the throughput and number of requests-per-second
(reqs/sec) that can be served from a single MiniCache VM
on MiniOS/Xen. For the HTTP client we use wrk and com-
pare MiniCache to lighttpd and nginx running on a stan-
dard Debian distribution and on Tinyx. For the reqs/sec test,
the client retrieves a 0-byte file; for the throughput measure-
ments a 256MB file is downloaded (retrieved over and over
for the duration of the test).

Figure 5a shows the reqs/sec results. On Xen, MiniCache
reaches about 600K reqs/sec for 50 simultaneous connec-
tions (M in the legend). The next best result comes from
Tinyx running nginx (TN) which achieves about 118K re-
qs/sec, followed by lighttpd on Tinyx (TL) which reaches
102K reqs/sec. In comparison, a standard Debian distribu-
tion achieves 85K reqs/sec with nginx (DN) and 75K re-
qs/sec with lighttpd (DL).
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Figure 6: Scalability of HTTP serving performance in (a) requests/sec and (b) throughput when using multiple concurrent
MiniCache VMs (on Xen/x86). “X mc” denotes the number of concurrent MiniCache instances.
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Figure 7: When running multiple MiniCache instances,
throughput is fairly distributed, as shown in this example of
8 concurrent VMs. Total throughput for each x-axis value is
the sum of the values of the 8 bars.

For throughput (see Figure 5b), MiniCache is the fastest
guest on Xen in our comparison, reaching 32 Gb/s. nginx
and lighttpd on Tinyx (TL, TN) produce a somewhat lower
rate of about 30.7 Gb/s, while on Debian, the throughput
is limited to about 20–22 Gb/s. Not shown in Figure 5b
because of the radically different network hardware are
throughput numbers for Minicache on ARM32: we reach
about 210 Mb/s on the Cubietruck’s 1Gb interface.

We next test how MiniCache scales with an increasing
number of VM instances (on Xen). We assign two cores to
dom0 and use the other two cores for the VMs, up to 4 of
them per core. The results in Figure 6a show that MiniCache
scales well with an increasing number of VMs, achieving
up to 720K reqs/sec when running 8 instances and 32 con-
nections. Regarding throughput, Figure 6b shows that Mini-
Cache instances coexist well with each other. Throughput
scales up to about 34 Gb/s with 4 VMs and decreases slightly
to 33.2 Gb/s with 8. In terms of fairness (cf. Figure 7), each
MiniCache VM is allocated roughly the same amount of the
available capacity. Within a VM, each of the concurrent con-
nections is also serviced at equivalent rates. This fairness is
crucial for providing a multi-tenant, vCDN platform.

To see whether we can scale to an even larger number of
concurrent VMs, we switch to a server with 4 AMD Opteron
6376 2.3 GHz CPUs (64 cores in total), and an Intel X540
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Figure 8: HTTP throughput when running up to 250 simul-
taneous MiniCache VMs.

10Gb card. For this experiment we assign 4 cores to dom0
and the rest to the MiniCache VMs in a round-robin fashion.
Figure 8 shows that MiniCache saturates the 10Gb link even
when running 250 VMs.

Next, we provide a breakdown to show how each of the
Xen optimizations described in Section 4 affects throughput.
To obtain transport-layer statistics, we implement miniperf,
an iPerf[50]-compatible server that can run on top of Mini-
OS. Table 3 shows the results. Please note that these numbers
are intended as a baseline measurement which exclude the
overhead of a physical NIC and its driver. The traffic is mea-
sured between dom0 and a single miniperf guest. We get
a large increase in performance from implementing TSO,
another large one from persistent grants (for Tx), and yet
another with the AVX2-based memcpy. This is especially
true for Tx, which is more relevant for MiniCache as an
HTTP server. Finally, enabling select/poll reduces the
rate slightly, as expected, but decreases CPU utilization.

As a final test, we evaluate the effectiveness of the
select/poll feature by including the 40Gb NIC operated
by dom0 and by measuring throughput versus CPU utiliza-
tion. As shown in Figure 9, even at high rates the core run-
ning MiniCache stays at a low 37% utilization percentage
(compared to 100% when this feature is disabled). We have
traced the remaining throughput bottlenecks back to Xen’s
netback driver and leave optimizations to it as further work.



Optimization Rx(Gb/s) Tx(Gb/s)
baseline 11.0 1.8
TSO 39.9 19.5
TSO, PGNTS 33.0 37.4
TSO, PGNTS, AVX2 62.0 47.3
TSO, PGNTS, AVX2, select/poll 61.4 (90.3%) 47.3 (53.4%)

Table 3: Breakdown of the different optimizations to Mini-
OS and lwIP and how they affect the TCP throughput of
a MiniOS VM on Xen. Percentages in parentheses denote
CPU utilization of the guest (only shown when select/poll is
enabled, otherwise the CPU is always at 100%). Measure-
ments are done with a miniperf VM and iPerf running in
dom0.
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Figure 9: CPU utilization for different transmission rates
when using the select/poll feature with MiniCache.

5.2 Filesystem Performance
To evaluate SHFS, our purpose-built filesystem as hash-
based object store, we sequentially read a 256 MB file,
meaning that we request the next chunk from SHFS when-
ever the data for the current one has been copied out.

To saturate the block I/O pipe we attach a RAM block de-
vice to Xen’s blkback driver for two reasons. First, using a
RAM device allows us to saturate the block I/O pipe, allow-
ing us to measure MiniCache’s performance rather than the
performance of a physical disk. Second, we expect memory
usage to be low since we are mostly targeting caching for live
content, meaning we only need to cache a relatively small
window of the content rather than the whole file. For in-
stance, 16GB RAM, not a large amount for modern servers,
is enough for the cache to handle over 350 concurrent, high-
quality, 6MB/s streams assuming we keep a 60 second buffer
for each.

As further optimizations we implement persistent grants
(refer back to Section 4) in MiniOS’ blkfront driver, and
make use of AVX/SSE instructions for memory copies. As
a final optimization we parallelize read requests by reading
ahead up to 8 chunks.

The results in Figure 10 show the read performance. A
read operation has finished after the requested data was writ-
ten by blkfront into a target read buffer. Persistent grants
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Figure 10: Breakdown of the different optimizations for
SHFS and how they affect the sequential read performance
of a MiniCache VM. Base is with AVX/SSE instructions for
memory copies, pgnts stands for persistent grants and rdan
stands for n blocks read ahead.
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Figure 11: Sequential read performance of SHFS of a Mini-
Cache VM compared to ext4 and tmpfs of bare-metal Linux.
The data is read from the corresponding file cache in each
test.

provide an improvement of about 25–50% with respect to
the baseline depending on block size. Reading chunks ahead
further boosts performance, up to as much as 5.8 times for 8
chunks read ahead for a maximum total of about 4.4 GiB/s.

For the next experiment we compare SHFS’ sequential
read performance on Xen/MiniOS to that of tmpfs and ext4
on bare-metal Linux (i.e., no virtualization). In this test, we
load the data into the corresponding filesystem caches before
the measurement starts so that no request is actually sent to
a physical device. Similar to the lwIP performance on Mini-
Cache, the storage I/O performance benefits mainly from the
fact that a read operation is a direct function call to Mini-
OS, instead of having to issue a system call and change
the privilege level on the CPU. Figure 11 shows that SHFS
is able to serve up to 10.66 GiB/s for sequential reading
compared to 6.75 GiB/s with ext4 on 6.15 GiB/s for tmpfs
on the same machine.

We next evaluate how quickly SHFS can perform open
and close operations compared to tmpfs and ext4 (cf. Fig-
ure 12). SHFS can carry out open/close operations at a rate
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Figure 12: Open and close operations per second for SHFS
on a MiniCache VM compared to ext4 and tmpfs on bare-
metal Linux. Filename length denotes the number of char-
acters in the file name. SHFS (hash) stands for doing the
open operation with the hash digest directly instead of with
its string representation.

of 23.6 million/sec independent of the hash digest length
which identifies the object. This is largely because (1) open
and close are direct function calls to SHFS, (2) opening a file
is implemented as a hash table lookup, and (3) the complete
hash table is read into memory at mount time.

In case the hash digest needs to be parsed from a string
representation, additional costs depending on the file name
length have to be added. With a file name with 129 char-
acters (128 characters representing a 512 bit hash digest in
hexadecimal and 1 prefix character), SHFS can still perform
4.7 million operations per second. On the same machine and
using Linux, we measured only up to 612K open and close
operations per second on tmpfs.

5.3 Boot Times
As shown in the simulation results, one of the critical factors
for providing good QoE for users is for MiniCache VMs
to be able to be quickly instantiated. The results presented
here include all of the optimizations described in Section 4.
Note that unless otherwise specified, we assign 512 MB to
MiniCache VMs: while using lower values would lower boot
times, 512 MB is what we configure when running the HTTP
performance tests previously presented, and so we feel this
is a realistic value.

The Xen hypervisor itself is already fairly optimized;
however, there is potential for further improvement in the
tools supporting it from the administrative domain dom0. We
take advantage of the mechanisms presented in [31], namely,
a faster XenStore and toolstack. In addition to this, we opti-
mize the Linux hotplug system by replacing the scripts that
attach virtual interfaces with binary ones. Figure 13 shows
the effects of these optimizations: starting from a baseline
of about 200 ms (xen noopt), the boot time goes down to
180 ms with the faster XenStore (xen+xs), further down to
168 ms with the optimized toolstack (xen+xs+ts) and down
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Figure 13: MiniCache (MC) boot times on XEN/MiniOS
showing savings from different optimizations. Noopt=no
optimizations, xs=XenStore, ts=toolstack and hp=hotplug
script.
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Figure 14: MiniCache (M) boot times versus Debian (D)
and Tinyx (T) on x86 and ARM32 (a32). L=lighttpd and
N=nginx.

to our final boot time number of 89 ms when applying the bi-
nary hotplug script (xen+xs+ts+hp).

With all of these optimizations in place, we now com-
pare these boot times against Linux-based VMs and when
running on x86 or ARM32 hardware (Figure 14). The best
results come from running MiniCache on top of MiniOS on
Xen and x86: we obtain a boot time of only 89 ms (Mx86 in
the legend). On ARM32 (the CubieTruck, Ma32 in the leg-
end), this jumps to about 371 ms, a rather respectable num-
ber considering the relatively low frequency of the processor
(1 GHz). Moving to Linux-based distributions yields boot
times of 655 ms (Tinyx with nginx, TN in the legend) and
5.4 secs (Debian, DN), showing that (1) using a minimalistic
OS provides significant gains and (2) using a stripped down
distribution such as Tinyx does as well.

Finally, is it worth noting that MiniCache virtual machine
destroy times are quite small: we measure 5 ms for Xen on
x86 (for an 8MB VM; for a 512MB image the number jumps
to 110.7 ms) and 73 ms on ARM.

5.4 Memory Footprint
MiniCache requires a relatively small amount of memory to
run, and the size of its images is small as well. It consumes



Component Minimal (KB) Default (KB)
TOTAL text 646 650
MiniOS 90 90
newlib 98 98
MiniOS netfront 25 25
MiniOS blkfront 12 12
lwip 233 237
MiniCache 188 188
TOTAL static 123 352
TOTAL dynamic 383 27,049
MiniOS netfront 25 2,114
MiniOS blkfront 69 1,053
lwIP 0.4 16,873
MiniCache HTTP 39 5,341
MiniCache shell 1 1
MiniCache SHFS 159 309
Other dynamic 90 1,358
TOTAL Other 53 852
Total 1.2 MB 28.9 MB

Table 4: Run-time memory consumption of the different
components of a MiniCache VM image, with a breakdown
for the text and dynamic sections.

28.9 MB of memory before receiving any HTTP requests;
Table 4 shows a break-down of memory consumption, with
the biggest contributor being memory for buffers in lwIP,
MiniCache and the netfront driver (“Standard” column).
Reducing these allocations to a minimum yields a consump-
tion of only 1.2 MB, although this version would not pro-
duce the high throughput and reqs/sec rates presented earlier
in this paper.

Finally, Table 5 compares MiniCache VM image sizes
to those of other OSes and HTTP servers: MiniCache is
quite small (670 KB uncompressed), followed by the Tinyx
images (5.5 MB with lighttpd and 7.5 MB with nginx,
respectively). The Debian images are much larger due to
them being heavyweight Linux distributions.

5.5 Summary
The results in this section show that MiniCache meets and
even exceeds the requirements derived from the simulations.
In terms of throughput (please refer back to the end of
Section 3), we had a requirement of 1Gb/s for a single
cache instance which is largely met by MiniCache’s 32 Gb/s;
at the AS-level, the largest throughput required was 200
Gb/s, which can be met with a small cluster of roughly 6
MiniCache servers. Further, MiniCache can be booted in 89
ms, certainly below the 100 ms to 1 second requirement.
Finally, MiniCache can handle large numbers of requests per
second and is able to deal with more than 200 concurrent
channels/streams (i.e., concurrent VM instances, up to 250
in our tests).

System Image Size (in MB) Min. Mem.
compressed uncompressed

MiniCache 0.26 0.67 1.2
lighttpd/Tinyx 5.5 11 23
nginx/Tinyx 7.5 13 51
lighttpd/Debian N/A 627 82
nginx/Debian N/A 603 82

Table 5: System image sizes (in MB) and minimum re-
quired memory for successful bootup for MiniCache and
other HTTP servers.

6. Discussion
In a world where containers have become an accepted rapid-
deployment mechanism, while Unikernels are still a some-
what exotic new topic with regards to real-world applica-
tions, the creation of MiniCache naturally raises questions.
In this section, we will address some common concerns
about unikernels in general and MiniCache in specific.

6.1 Why Unikernels and not Containers?
We chose unikernels for several reasons.

One common argument is that containers are inherently
smaller and faster than VMs. While this is true for heavy-
weight VMs, this does not hold for small unikernels, as we
have shown in this paper. To give a comparison, a mini-
mal Docker container doing nothing but booting and going
to sleep consumes approximately 2.75 MB of main mem-
ory and takes approximately 150 ms to create the container.
Compare this to MiniCache, which uses only 1.2 MB of
main memory, and which takes less than 50 ms to be created,
plus another 50 ms for booting. While this compares an op-
timized Xen with an unoptimized Docker, it also compares
a full-fledged content cache against a no-operation, empty
container. From this rough comparison, it is obvious that at
the very least, containers are not necessarily and inherently
faster and leaner than VMs, and that it is conceivable that
unikernels might even outperform them.

On the other hand, one of the main strengths of VMs
compared to containers is the stronger isolation against each
other. On a hypervisor such as Xen, only the hypervisor core
forms the attack surface for a misbehaving VM; interfaces
which are mainly provided by virtual devices, can be taken
away by not providing them in the virtual machine defini-
tion. In contrast, on a container system, both the container
daemon itself as well as the host operating system can be
attacked. This stronger security and isolation allows the de-
ployment of critical information within unikernels, such as
private keys for SSL certificates, to allow SSL-based content
delivery by a CDN.

6.2 Are Unikernels Inherently Hard to Debug?
The argument is sometimes raised that unikernels are hard
to debug because the standard tools used for debugging and



profiling by developers are not available. This is only true
to a certain degree. In theory, unikernels are not harder to
debug than user-space applications, and much simpler than
a full-fledged, general-purpose OS. This is due to the fact
that the unikernel application and its operating system parts
share a single address space and form a single binary. For
debugging, it is in fact possible to run unikernels such as
MiniCache within gdb.

It is, however, true that currently, there is a lack of tools
specifically designed for unikernel debugging and profil-
ing. To address and alleviate this problem, we developed a
profiling tool that periodically walks the unikernel’s stack
and creates a flame graph [20] out of the data, giving us
a relative measure of which are the largest bottlenecks in
the system. This stack profiler is available to the public at
https://github.com/cnplab/uniprof as open source.
Further, we are in the process of porting parts of the Linux
perf system to MiniCache to be able to obtain fine-grained
performance numbers from the unikernel.

6.3 Is MiniCache Deployment Feasible?
This paper features a large number of changes and improve-
ments at a wide variety of places in the overall system (cf.
Figure 3). This raises the question of how feasible a deploy-
ment of MiniCache is in a form that can realize the presented
performance numbers.

The changes to the netback driver and the toolstack,
which both run in the management domain, indeed require
deploying a modified Xen platform, actually a modified
dom0. However most of the changes are contained within
MiniCache itself, namely the changes to the netfront

driver and lwIP, as well as the SHFS and the HTTP server
code implementations. None of these require special sup-
port from the underlying virtualization environment. Hence,
MiniCache can run out of the box on standard Xen deploy-
ments such as Amazon EC2.

7. Related Work
Measurement studies: Over the years there has been a
significant number of large-scale CDN measurement stud-
ies [1, 5, 8, 10, 26, 33]. In [10], the authors perform a study
of large data sets containing users streaming video and con-
clude, among other things, that buffering ratio has the largest
impact on user engagement. The work in [26] analyzes over
200 million sessions and notes that the delivery infrastruc-
ture has important shortcomings (e.g., 20% of sessions have
a re-buffering ratio of 10% or higher). The work in [5] ana-
lyzes a dataset containing 30 million video sessions and con-
cludes that federation can reduce telco-provisioning costs by
as much as 95%. Likewise, the work in this paper argues
for better CDN performance through federation of shared
infrastructure. Finally, [17, 54] present results from years
of operational measurement of CoralCDN, an open content
distribution network running at several hundreds PoPs.

In terms of simulations, [53] introduced results from
a custom-built CDN simulator, although it had only 1,000
nodes. In more recent work, [26] presents a custom, trace-
driven simulation framework. Further, [51] uses an event-
driven simulator to evaluate a P2P-based delivery network
(on home gateways) of up to 30K users. In contrast, we fo-
cus on elastic CDNs, and compare the effects on metrics
when running up to 100K concurrent streams versus stan-
dard CDNs.
Content delivery architectures: A number of papers have
analyzed IPTV networks and enhancements to them [8, 30,
33, 43]. In [8] the authors provide a study of a large IPTV
network covering 250,000 households, while SCORE [33]
proposes enhancing IPTV network performance by predic-
tively recording a personalized set of shows on user-local
storage. The authors of [51] argue for deploying P2P-based
VoD caches on ISP-controlled home gateways in order to
reduce energy consumption in data centers. Cabernet [57]
introduces an architecture for deploying services on third-
party infrastructure, and present an example of how it could
support IPTV delivery through wide-area IP multicast.

Several relatively recent works have focused on CDN
multi-homing, the ability for clients to download content
from multiple CDNs. The authors of [26] show that using
a multi-homing video control plane can improve the re-
buffering ratio by up to twice in the average case. The work
in [25] presents a novel algorithm that computes assignments
of content objects to CDNs taking cost and performance
into account; the authors find that their scheme can reduce
publishing costs by up to 40%. Further, the work in [5]
provides a model of CDN federation, and [39] gives an
overview of the Akamai network and its capabilities. Our
work is complementary to these, aiming to provide an even
wider choice of deployment sites and (virtual) CDNs.
Content caches: Content cache servers are typically special-
ist devices (appliances), built on general-purpose hardware
(e.g., Netflix Open Connect [35], OnApp Edge server [40],
Akamai Aura [2], and EdgeCast [13]) with standard OSes,
and can be further accelerated using special-purpose devices
such as NetApp’s FlexCache [34] to provide in-memory
caching. Unlike the above, MiniCache provides a single-
purpose OS for content caching. To the best of our knowl-
edge, MiniCache is the first attempt at a virtualized, high
performance and minimalistic content cache OS.
Specialized VMs: Our work follows the trend of using spe-
cialized VMs, also known as unikernels [14, 24, 28, 32, 55].
Although some of these were built with an HTTP server, we
specialize and optimize a large range of our system, from
the underlying virtualization technology, the guest OS, block
and network drivers, to the content cache code itself. More
recently, Jitsu [29] and the work in [48] proposed the instan-
tiation of VMs on-demand, even as the first packet of a TCP
flow arrives. Further, Jitsu provided a performance evalua-
tion of unikernels running on an ARM-based board (a Cubi-



etruck, the same platform we use), although the focus there
was not on optimized content delivery. IX [6] introduces a
unikernel-like environment for running user space applica-
tions in a protected environment. However, it relies on busy
polling and requires direct access to a physical NIC and thus
limits the degree of consolidation.

8. Conclusions
We introduced the concept of elastic CDNs, virtual CDNs
built on-the-fly on top of third-party infrastructure. Using
a custom-built simulator, we have shown the benefits that
such CDNs would have in the wide area and presented Mini-
Cache, a virtualized, high performance virtual cache node
able to boot in 90 ms, yield throughput of up to 34 Gb/s and
handle requests at rates of up to 720K reqs/sec. Regarding
future work, we note that most of the remaining network bot-
tlenecks in Xen are due to the netback driver. As a result, we
are currently developing a new netmap-based netback (and
netfront) driver, similar to the one in [32], but supporting fea-
tures such as TSO and the latest netmap API. Furthermore,
to widen the applicability of MiniCache, we are working on
a port to KVM, for which we currently have a non-optimized
prototype implementation based on OSv [24].
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