
BrainSlug: Transparent Acceleration of Deep Learning Through
Depth-First Parallelism

Nicolas Weber, Florian Schmidt, Mathias Niepert, Felipe Huici
NEC Laboratories Europe, Systems and Machine Learning Group

Abstract

Neural network frameworks such as PyTorch and Tensor-
Flow are the workhorses of numerous machine learning
applications ranging from object recognition to machine
translation. While these frameworks are versatile and
straightforward to use, the training of and inference in
deep neural networks is resource (energy, compute, and
memory) intensive.

In contrast to recent works focusing on algorithmic
enhancements, we introduce BRAINSLUG, a framework
that transparently accelerates neural network workloads
by changing the default layer-by-layer processing to a
depth-first approach, reducing the amount of data re-
quired by the computations and thus improving the per-
formance of the available hardware caches. BRAINSLUG
achieves performance improvements of up to 41.1% on
CPUs and 35.7% on GPUs. These optimizations come
at zero cost to the user as they do not require hardware
changes and only need tiny adjustments to the software.

1 Introduction

Artificial intelligence, and neural networks in particu-
lar, have gained immense notoriety in the past few years.
Their flexibility means that they can be applied to a wide
range of applications, from recommendation systems for
online stores, to autonomous driving, to financial fraud
detection or optimization of production lines.

One of the main issues with neural networks is their
high computational time. While over the years many al-
gorithmic and hardware optimizations to reduce the cost
of these computations have arisen, the sequential way in
which a neural network is processed, taking input data
and computing on it from layer to layer before mov-
ing onto the next input data, has remained largely fixed.
Even though this breadth-first processing is straightfor-
ward, the fact that each pass through the network acts on
a relatively large amount of data causes constant cache

trashing (whether on CPUs, GPUs, or other hardware),
reducing their effectiveness and ultimately increasing
computation time. This partly explains why processors
with extremely high memory throughput are used for
neural networks so that the processors are never idle.

In this report we propose the use of a depth-first ap-
proach: we take a subset of the input data (e.g., a part of
an image) that can fit in L1 cache and compute all layers,
then repeat the process for the next subset of the data. At
this high level the process sounds simple; however, there
are two main issues. First, only certain operations (i.e.,
layer types) are able to function when given only a subset
of the data. Second, processing data in this way requires
the user to write specialized compute kernels for each
possible sequence of layers. This is clearly difficult to do
by hand and points to the need of an automated system
to carry this out.

We implemented BRAINSLUG (brainslug.info), a sys-
tem that enables depth-first computation of neural net-
works, providing transparent acceleration through im-
provements to data locality. We make the following spe-
cific contributions:

• A novel, depth-first method for neural network
computation that increases data locality and reduces
computation time. The method does not change the
actual results of the computation, and is widely ap-
plicable to a large set of neural networks and differ-
ent types of hardware.

• An implementation of this method, including a
modular architecture that allows for easy extensibil-
ity to multiple neural network frameworks (e.g., Py-
Torch [24], Theano [32], Caffe [3], TensorFlow [7])
and hardware targets (e.g., CPUs, GPUs, FPGAs,
etc.).

• The implementation and evaluation of BRAINSLUG
using a PyTorch front-end and CPU and GPU
back-ends. Through extensive experimentation we
show that BRAINSLUG achieves speed-ups of up to
41.1% on CPUs and 35.7% on GPUs while requir-

1

http://brainslug.info

C
onvolution

B
atch N

orm
alization

N
on-L

inearity

F
ully C

onnected

Pooling

...

C
onvolution

B
atch N

orm
alization

N
on-L

inearity

Pooling

N
on-L

inearity

Figure 1: Typical instance of a deep convolutional neu-
ral network. All CNNs have convolutional and non-
linearity layers. While the normalization and pooling
layers are optional, they are found in almost all of the
existing CNNs for computer vision tasks.

ing only tiny adjustments to a user’s program.
In the following, we first give a brief background about

neural networks in Section 2. Section 3 describes the
main idea behind BRAINSLUG, followed in Section 4 by
a description of the system’s implementation, and an in-
depth evaluation in Section 5. Finally, we discuss related
work in Section 6 and conclude in Section 7 with a dis-
cussion and future work.

2 Background on Neural Networks

On a basic level, a neural network corresponds to a se-
quence of operations which act on numerical input data
of a certain predefined size, so-called tensors. In com-
puter vision, for instance, the input tensors are typically
three-dimensional data structures, with two dimensions
defining the two-dimensional picture (of w× h pixels),
and the third dimension d containing the information of
each color channel. The naming of those three dimen-
sions as width, height, and channels has been adopted as
a common general naming scheme beyond the field of
computer vision.

The transformations applied to the input data are
grouped into layers, with each layer executing a certain
type of operation (an example of a deep neural network
is given in Figure 1). The most common layers are:
(1) Element-wise layers apply a function to each of the
input tensor’s values independently. Typical examples of
element-wise layers are normalization and non-linearity
layers. The former normalize the output of a previous
layer to conform to a specific desired distribution, im-
proving convergence behavior and accuracy of the net-
work. A non-linear or activation layer applies an ac-
tivation function element-wise to the input. A com-
monly used activation function is the rectified linear unit
(ReLU), computing f (x) = max(0,x) on each input [20].
(2) Pooling layers operate on predefined and fixed re-
gions of the input tensor. These predefined regions are
often non-overlapping and square-shaped. An example
of two pooling operations (average and maximum) is
given in Figure 2.

input channel avg pooling max pooling

1 2 2 5
3 2 2 3
7 3 4 8
5 9 6 2

2 3
6 5

3 5
9 8

Figure 2: Example of a pooling operation on one in-
put channel. The aggregation is performed over non-
overlapping regions of the input space. The figure is
based on an example from the Caffe tutorial [15].

(3) Convolutional layers apply a convolution operation.
In the image example, a convolutional layer comprises
k groups of d filters each, where in each group one of
the filters gets applied to each channel. Since each fil-
ter works on a 2-D channel, each of the k groups is also
called a 3-D filter (Figure 3). The output dimension of a
convolutional layer has depth k, while keeping the chan-
nel dimensions w×h.
(4) Fully-connected or dense layers: Each value of the
output vector is a weighted sum of all input values, that
is, all output values are connected to all input values. In
deep CNNs, there are usually only a few dense layers and
these are located at the end of the network (see Figure 1).

Each neural network can be mapped to a Directed
Acyclic Graph (DAG) whose nodes correspond to
(groups of) element-wise operations and whose edges
represent the input-output relationships between the
computations. Most deep learning frameworks map a
given neural network specification to such a computation
graph and execute the graph on one or multiple devices.
Since the DAG has a unique root (corresponding to the
input data), every node has a unique depth. A level of a
computation DAG is made up of all operations at a spe-
cific depth. All nodes at the same level compute their op-
erations independently of each other, but nodes at deeper
levels might depend on results of nodes in previous lev-
els. The computation DAG, therefore, also represents the
dependency structure of the computations. Figure 4 illus-
trates the connection between the layers of a neural net-
work (right), the computation graph (left), and the corre-
sponding code snippet (center).

3 BRAINSLUG: Method Principles

Every DNN has to perform numerous passes through the
network during training and prediction. In many cases,
millions of floating-point operations are required for one
pass and there are millions of passes per training task.
With BRAINSLUG we want to improve the resource uti-
lization of DNN frameworks, with a focus on acceler-
ating (groups of) element-wise and pooling layers, all
the while ensuring that this acceleration is transparent to
users and that it can be implemented irrespective of the

2

filters input tensor

...

channel 1

multiply and accumulate

multiply and accumulate

... ...

3-D filter 1

3-D filter k
channel k

output channels

Figure 3: Each convolutional layer moves a set of 2-D
filters (each being part of one 3-D filter) over the input
channels from left to right and top to bottom and multi-
plies and accumulates the corresponding values.

deep learning framework used (e.g., PyTorch, Theano,
Caffe) and irrespective of the target hardware.

Towards this goal, we address the shortcoming of ex-
isting deep learning frameworks that always execute neu-
ral networks layer by layer. The dependency structure of
the computation graph, however, allows us to exploit sit-
uations in which a different execution pattern is possible.
Our work on BRAINSLUG is therefore motivated by two
basic questions:

1. Are there ways to rearrange the standard execution
order of the computation graph such that the hard-
ware can operate more efficiently while delivering
the same numerical results?

2. Is there a method for detecting when such a rear-
ranging is possible such that it is both frequently
applicable and efficient to compute?

With the proposed BRAINSLUG approach, we answer
both questions in the affirmative. First, we show that the
way in which the computation graph is executed has an
impact on the efficiency of the computations. In several
situations, the same set of operations can be executed
such that the intermediate data fits into the caches and
registers of a device, circumventing the need to read and
write from the device’s main memory. This is possible
by executing independent paths (or groups of indepen-
dent paths) in the computation graph in parallel, essen-
tially parallelizing the computation graph not only in a
breadth-first but, when beneficial, in a depth-first man-
ner. Second, we show that for a large class of DNNs,
there is a generic method for detecting independent paths
whose intermediate data fits into the caches and registers.

3.1 Depth-First Parallelism
Existing deep learning frameworks parallelize the com-
putation graph in a breadth-first manner, finishing all
computations at one level of computation before start-
ing the next level’s computations. We refer to this as

breadth-first parallelism because the operations at one
DAG level are executed in parallel before the computa-
tion proceeds to lower DAG levels.

BRAINSLUG is able to detect and execute more com-
plex independent computation paths in parallel. While
this does not reduce the overall number of operations, it
often leads to situations where the data accessed by these
independent paths fit into the caches and registers of the
hardware, increasing performance. We refer to the par-
allel processing of independent paths in the computation
graph as depth-first parallelism. The challenge is now
to transparently detect and interleave these parallelism
types to suit the characteristics of particular hardware.

Figure 5 illustrates depth-first parallelism for the ex-
ample in Figure 4. The computation graph is the same
but the operations are grouped according to the indepen-
dent computation paths involving the normalization and
non-linear operations, which are merged in the pooling
layer. Whereas in the typical breath-first, layer-wise exe-
cution of DNNs the data has to be written and read from
main memory for each layer, here the intermediate data
are small enough to fit into the hardware’s cache, im-
proving overall performance. Fortunately, as we show
in what follows, detecting the existence of these parallel
computation paths in the DAGs of DNNs is both efficient
and frequently possible.

3.2 Aggregation Detection

To detect layers that can be aggregated, BRAINSLUG
parses through the DAG of a given neural network layer-
by-layer and identifies sequences of layers that support
data locality, that is, sequences of layers that operate on
a sub-set of the data (e.g., a portion of an image) reducing
the number of input-output dependencies in the computa-
tion graph. Examples of such layers are layers perform-
ing element-wise and pooling operations. We add all
consecutive sequences of such layers to a stack (see Fig-
ure 6), which we then collapse by analyzing the under-
lying computations and rewriting them to utilize depth-
first parallelism. A stack, therefore, partitions indepen-
dent computation paths in the DAG into paralellizable
code blocks such that each such block’s intermediate data
fits into the device caches. As each of the SIMD units
of a single device core share the same cached data, we
need to find an input data region (and the corresponding
combined paths in the computation DAG) that (1) is big
enough to keep all SIMD units utilized during the com-
putations and (2) does not exceed the cache size limit.
As one can see in Figure 5, if one SIMD unit is mapped
onto one white box, we need at least the same number of
boxes as we have SIMD units to operate efficiently.

During the rewriting of the computations we need to
take the dependencies of the original DAG into account.

3

B
at

ch
no

rm
N

on
-

li
ne

ar
P

oo
l

foreach x in input:

a = batchNorm(x)

foreach x in a:

b = max(x, 0)

output[0] = max(b[:4])

output[1] = max(b[4:])

Input

Batch Normalization

Non-Linearity

Pooling

Device memory

Device memory

Device memory

Figure 4: Breadth-first parallelism. The computation graph (left) for the neural network layers (right) and the corre-
sponding code snippet (middle). The standard method for processing the layers is in a breath-first manner, with every
operation of level i in the computation graph executed in parallel before operations at level i+1. This is indicated by
the white boxes (left) surrounding each level of the computation graph.

B
at

ch
no

rm
N

on
-

li
ne

ar
P

oo
l

foreach x in input[:4]:

a[x] = batchNorm(x)

b[x] = max(a[x], 0)

output[0] = max(b)

foreach x in input[4:]:

a[x] = batchNorm(x)

b[x] = max(a[x], 0)

output[1] = max(b)

Input

Device memory

on-chip caches
and registers

Device memory

on-chip caches
and registers

Figure 5: Depth-first parallelism. The computation graph (left) for the neural network layers (right) and the corre-
sponding code snippet (middle). BRAINSLUG can detect independent paths in the computation graphs and aggregate
these paths into independent processing blocks. The white boxes (left) indicate the parts of the computation graph that
BRAINSLUG chose to parallelize. The intermediate data generated within these blocks fits into the hardware cache.

For example, as can be seen in Figure 5, the pooling layer
requires all data from the element-wise layers to be cal-
culated before it can perform its computations.

We provide a detailed description of all of
BRAINSLUG’s mechanisms in the following sections.

4 BRAINSLUG: Architecture and Imple-
mentation

One of the explicit goals of BRAINSLUG is to transpar-
ently accelerate neural networks (NN) irrespective of the
framework (e.g., PyTorch, Theano, Caffe) they are im-
plemented in. Further, we want the acceleration to ap-
ply to a wide range of hardware devices including GPUs,
CPUs, FPGAs, and vector processors, among others; this
is possible because even though their architectures may
vary widely, they all rely on a memory hierarchy to speed
up memory accesses, precisely the hardware feature that
BRAINSLUG targets.

To comply with these requirements, the BRAINSLUG
architecture introduces the notion of front-ends to sup-
port different NN frameworks, and back-ends to be able
to execute on different kinds of hardware (see Figure 7).

The BRAINSLUG front-ends are specific to a partic-
ular framework. They are in charge of parsing the NN
in whatever format it is in, and providing an abstraction

for it called a stack for BRAINSLUG’s optimizer compo-
nent to use. Further, the front-ends provide glue to in-
voke BRAINSLUG’s scheduler component whenever the
framework launches the prediction process.

The back-ends provide the necessary glue to have
BRAINSLUG-generated code execute on different kinds
of hardware, including providing hardware specs to the
optimizer component to help it in generating the code.

Beyond these front and back-ends, BRAINSLUG con-
sists of two main components: an optimizer, correspond-
ing to a compile phase, and a scheduler, mostly in charge
of the execution phase. Next, we cover each of these
phases in turn, pointing out how the various components
in the BRAINSLUG architecture interact to optimize and
execute a NN. We end the section by giving a more de-
tailed description of the PyTorch frond-end we imple-
mented along with its API; and a discussion of the CPU
and GPU back-ends.

4.1 Compile Phase

Figure 8 shows BRAINSLUG’s compile phase, which is
primarily carried out by BRAINSLUG’s optimizer. The
process begins when the NN framework calls the front-
end’s optimize function method (Step 1 in the Figure).
Next, the Network Analyzer goes through the neural net-

4

1

2

3

4

5

6

7

2

3

4

5

6

7

1

3

4

5

6

7

4

5

6

7

4

5

7

6

4

5

1

2

3

1

2

4

5

6

7

1
2
3

collapse
skip

1
2
3

1
2
3

6
7

collapse

#1 #2 #3 #4 #5 #6 #7

1 stack = []

2 foreach(node in network):

3 if(node is optimizable):

4 if(stack is empty):

5 network.replace(node , stack)

6 else

7 network.remove(node)

8 stack.add(node)

9 else:

10 stack.collapse ()

11 stack = []

12

Figure 6: BRAINSLUG’s layer aggregation process, shown visually (left) and as pseudo-code (right).

Backend Backend

Frontends Frontends

PyTorch TensorFlow Caffe Theano NN

frameworks

B
ra

in
S

lu
g

target

hardware
CPUs GPUs FPGAs

Vector

procs

F
R

O
N

T
-

E
N

D
S

PT-FE

NN abstraction (stack)

TF-FE C-FE Th-FE

OPTIMIZER

Frontends Frontends

B
A

C
K

-

E
N

D
S

FPGA-BE CPU-BE GPU-BE VP-BE

SCHEDULER

Figure 7: BRAINSLUG architecture consiting of front-
ends (FE) that plug to existing frameworks and convert
their NNs into a common abstraction; the optimizer that
generates the code to transparently accelerate them; and
the scheduler that executes such code, relying on the
back-ends (BE) to run it on different target hardware.

work and identifies sequences of optimizable layers; a
layer is optimizable if its type is in BRAINSLUG’s list of
optimizable layers (Step 2).

Third, the Collapser retrieves device specs from the
back-end(s) (e.g., cache sizes) and takes care of reduc-
ing the layers so that their memory usage can be fit into
a target cache (Step 3). In the next step (Step 5), the
Code Generator retrieves device-specific pre-processor
templates (Step 4) to speed up particular functions (e.g.,
the max function maps to fmaxf on a GPU), generates
optimized code and compiles it (Step 5). Finally, the
Code Generator uses the front-end to inject the code back
into the NN framework (Step 6).

Collapse Process. The collapse process merits further
description (see Figure 9 for a diagram and Listing 1 for
corresponding pseudo-code). To begin with, we identify
optimizable layers and group them into a stack. We then
map those layers onto basic computational operations:
these can either be element-wise (e.g., Batch Normaliza-

Optimizer

inject
launch code

Collapser

Code Generator

Network Analyzer

device
specs

pre-processor
templates

compile

B
ac

ke
nd

parse
network

F
ro

nt
en

d

N
N

 F
ra

m
ew

or
k

#2

#3

#4

#5

#6

#1

Figure 8: BRAINSLUG’s compile phase. The sys-
tem parses a NN to identify collapsible layers (steps
1, 2), collapses those layers to fit in cache (3), inserts
hardware-optimized functions into the code (4), com-
piles the code (5) and transparently injects the code back
into the NN framework (6).

Convolution

BatchNorm

Max Pooling

ReLU

AvgPooling

Linear

BatchNorm

Max P. (Loop)

ReLU

Avg P. (Loop)

Avg P. (Norm)

Step #0

Step #1 S
eq

ue
nc

e
#0 Convolution

Linear

Collapsed Stack

#5#1 #2 #3 #4

Figure 9: BRAINSLUG’s collapse process makes the ex-
ecution of layers, and particularly the data they need,
amenable to the available cache sizes. Convolution and
linear layers cannot be optimized and are left untouched.
Operations marked in red are non-element-wise.

tion or ReLU) or non-element-wise (e.g., pooling).
Third, we assign these operations to steps. If an oper-

ation is element-wise, it can always be added to a step. If
not, it can still be added to the step if there is not already
another non-element-wise operation present. If this cri-
terion is not met then we create another step: this is nec-
essary as a non-element-wise layer’s operations depend
on the output of a larger number of previous operations.

After this, we group the steps in order to utilize hard-
ware resources efficiently. As each step requires that it
is synchronized after it is processed, all data needs to be
stored in a local data cache to pass data from one step

5

1 class Stack:

2 def collapse ():

3 #3: group operations in steps

4 steps = []

5 step = new Step()

6 foreach(operation in optimizable):

7 if(not step.onlyElementwise () or

8 not operation.isElementwise ()):

9 step.add(operation)

10 else:

11 steps.add(step)

12 step = new Step()

13

14 #4: group steps in sequences

15 sequences = []

16 sequence = new Sequence ()

17 foreach(step in steps):

18 sequence.add(step)

19 if(sequence.resourceConsumption () >

20 device.resourceLimit ()):

21 sequence.remove(step)

22 sequences.add(sequence)

23 sequence = new Sequence ()

24

25 #1: identify optimizable layers

26 stack = new Stack ()

27 foreach(layer in graph):

28 if(isOptimizable(layer)):

29 #5: replace layers with stack

30 if(stack.empty()):

31 graph.insertBefore(layer , stack)

32 graph.remove(layer)

33

34 #2: map layer to operations

35 foreach(operation in layer);

36 stack.add(operation)

37 else:

38 stack.collapse ()

Listing 1: Pseudo code explaining BRAINSLUG’s
collapse process.

to another. To accomplish this, we bundle these steps
into sequences. We iterate over the steps and evaluate if
their resource consumption fits the limitation of the target
hardware (e.g., a L1 cache on a CPU or shared memory
on a GPU). The resource consumption is calculated by
the amount of data that each step requires and the num-
ber of active SIMD units of the processor that share this
data. For example: If we have 128 SIMD units, a non-
overlapping pooling layer with kernel size 3x3, and 32
channels, we would require 128*32 B for the output and
128*3*3*32 B for the input. An additional layer would
have the previous input size as output, and a correspond-
ing larger input size. If the stacked steps do not exceed
the hardware resources, we add the step to the sequence,
otherwise we create a new sequence.

Finally, we generate the final code. There are two
possible scenarios. First, if a sequence only contains a
single step, we iterate over the entire input data: in this
case data locality is achieved by directly passing the val-

1 void step_0(in_data , out_data , ...):

2 foreach(o in out_data):

3 foreach(i in in_data):

4 MaxPooling ()

5 BatchNorm ()

6 ReLU()

7

8 void step_1(in_data , out_data , ...):

9 foreach(o in out_data):

10 foreach(i in in_data):

11 AvgPooling ()

12 AvgNormalization ()

13

14 void sequence_0(in_data , out_data , ...):

15 float cached_data[...]

16 step_0(in_data , cached_data , ...)

17 step_1(cached_data , out_data , ...)

Listing 2: Example code of a collapsed stack.

1 import torchvision.models as models

2 import brainslug

3

4 # load the model

5 model = models.__dict__[’...’]()

6

7 # optimize with BrainSlug

8 brainslug.optimize(model)

9

10 # execute the model

11 model (...)

Listing 3: Snippet showing how to use BRAINSLUG’s
PyTorch front-end. Only lines 2 and 8 need to be added
by the user.

ues from one operation to another. If there are multi-
ple steps, we need to perform the previously-mentioned
synchronization between the steps. In the case that the
cache size limit is not reached, we increase the size of it,
so that each SIMD unit may not calculate a single out-
put value, but multiple ones, to better utilize the given
hardware resources. Finally, we compile the code us-
ing a device-specific compiler and replace the optimized
layers in the NN with our collapsed stack. To illustrate,
Listing 2 shows how the example in Figure 9 is mapped
onto the actual final code.

4.2 Execution Phase

BRAINSLUG’s execution phase, embodied by the sched-
uler, handles the execution of the compute kernels. When
a stack is executed, the front-end gathers all necessary
data and parameter tensors. The scheduler then calcu-
lates the output size and allocates memory using the NN
framework. After this the kernel function object (cubin
for GPU and dll for CPU) is loaded, executed and the
result buffer is returned to the NN framework. If there
is more than one sequence in a stack the sequences are

6

executed in a serialized fashion.

4.3 PyTorch Front-end and API

We implemented a PyTorch front-end. We chose Py-
Torch as it was the first NN framework to support dy-
namic network graphs that can be reshaped at runtime.
This feature complicates the implementation but allows
us to show that our method can be applied even in such a
highly dynamic scenario.

The frontend parses through the neural network,
groups all optimizable layers in stacks and passes these
to the BRAINSLUG optimizer. These are then removed
from the network and replaced by a special BRAINSLUG
layer (one per stack) that pass the control flow to the
BRAINSLUG scheduler whenever they are triggered. If
there are multiple equivalent stacks, BRAINSLUG only
generates the code once and reuses it for all identical
stacks.

Finally, it is worth noting that the front-end is ex-
tremely easy to use: the user need only add a few lines
of code in order to enable transparent acceleration of the
neural networks (see Listing 3).

4.4 CPU and GPU Backends

GPU: GPUs are often used for processing of neural net-
works, mainly because of their high compute perfor-
mance and memory throughput. For the implementation
we use two code building blocks.

For steps that only perform element-wise operations,
we start as many thread blocks as there are channels and
each thread blocks applies its calculations on each batch,
for a specific channel.

For pooling layers we distinguish between stacked
and non-stacked. In the non-stacked case, we start
BatchSize * Channels thread blocks. The SIMD
units iterate over all data elements, while we process
as many element as we have SIMD units in parallel.
In the stacked case, we use BatchSize * Channels *

Patches thread blocks, where each patch represents a
depth-first processing and use the SIMD units the same
way. To store the data for the depth-first processing we
use two buffers allocated in the devices shared mem-
ory. When a step is processed, we synchronize the entire
thread block and swap the buffers for the next step.

In general we use a thread count of 128, which is a
good trade-off between overhead when synchronizing a
thread block and compute utilization. Further, we limit
the usage of shared memory to 16 kB (depending on the
GPU either 64 or 92 kB would be available), as this can
have a negative impact on the performance because it re-
duces the amount of blocks that can be scheduled onto

the GPU multiprocessor, resulting in less opportunities
to employ latency hiding.
CPU: The CPU back-end relies on the Intel SPMD
Program Compiler [13] (ISPC). ISPC can be seen as
“CUDA for CPUs”: it adds syntactic sugar to the appli-
cation and explicitly defines which computations should
be done by a single SIMD unit. Because of the similar-
ities between ISPC and CUDA we can share many parts
of the implementation between both architectures. As
CPUs do not have a dedicated shared memory, we allo-
cate the memory on the stack. The other parts of the im-
plementation are similar and differ only in the way vari-
ables are used – either by all or only single SIMD units
– and replacing the outer loops with the ISPC specific
foreach(...) instruction. ISPC can target different
instruction sets, e.g. SSE[2,4], AVX[1,2] and AVX512
for Intel’s Knight’s Landing. We use the default values
from the compiler. ISPC further supports a task system,
similar to CUDA thread blocks. This task system has to
use some predefined variants provided by ISPC or can
be implemented by the user. As our task system does not
require any special features, we implemented a simple
variant based on parallel for using Intel’s Threading
Building Blocks [14] to minimize the framework’s over-
head.

5 Evaluation

To evaluate BRAINSLUG we chose the TorchVision[25]
package. TorchVision contains a series of broadly used
neural network architectures for computer vision appli-
cations. We use the entire set of available networks rang-
ing from AlexNet (A) [16], Densenet-(121, 161, 169, and
201) (D) [9], Inception v3 (I) [31], Resnet-(18, 34, 50,
101, and 152) (R) [8], Squeezenet-(1.0 and 1.1) (S) [11],
and VGG-(11, 13, 16, and 19, with and without Batch
Normalization) (V) [28], a total of 21 different architec-
ture and parameter combinations.

We run all tests on a server with an Intel Xeon E5-
2690v4, an NVIDIA GeForce GTX 1080 Ti, Debian 9,
NVIDIA GPU driver v384.81, CUDA v9.0, ISPC v1.9.2,
Python v3.5.3 and PyTorch v0.3.0 (using cuDNN). We
perform the test times ten times for the GPU and five
times for the CPU and we take the minimum execution
time for both PyTorch and BRAINSLUG results.

5.1 Stacked Layers Acceleration
For the first experiment we want to evaluate the advan-
tage of our proposed layer stacking mechanism. To do
so, we build artificial neural networks consisting only of
layers that can be optimized using BRAINSLUG. In par-
ticular, we define a block consisting of a Max-Pooling
(Kernel: 3x3, Stride: 1x1 and Padding: 1x1), a Batch

7

0 5 10 15 20 25 30 35 40
Block Count

101

102

103

104
Ti

m
e

(m
s)

GPU (Py)
GPU (BS*)
GPU (BS1)
GPU (BS5)
CPU (Py)
CPU (BS*)
CPU (BS1)
CPU (BS5)

Figure 10: Performance of BRAINSLUG’s stacked layer
mechanism versus PyTorch for increasing numbers of
<Max-Pooling,Batch Normalization,ReLU> blocks.

Normalization and a ReLU layer, and create neural net-
works that comprise between 1 and 40 of these blocks.
We execute these networks on a CPU and GPU (see Fig-
ure 10, notice the log scale) and evaluated three different
strategies: only 1 step per sequence, max 5 steps per se-
quence and unrestricted.

On the CPU, the PyTorch implementation is always
10-20x slower than BRAINSLUG. This massive increase
is partially due to the fact that the current PyTorch imple-
mentation is not particularly optimized for CPUs: most
significantly, it does not use any explicit vector process-
ing instructions. In contrast, we use ISPC for vector op-
erations, so in theory we have 8x more computational
power (AVX2 with 8x 32Bit float operations). Further,
the PyTorch CPU code relies on OpenMP parallel

for constructs, but does not define a specific execu-
tion schedule, yielding sub-optimal performance. On the
GPU, BRAINSLUG yields a speed-up of 1.4-2.2x.

For both devices the performance improves even if we
only allow one step per sequence. It further improves
when we stack multiple steps in a sequence, up to 61%
for the GPU and 58% for the CPU. In the unrestricted
case, we can see that for the lower block counts it is equal
or even slightly better than the 5 step scenario. How-
ever, the performance significantly decreases for larger
values until it reaches an artifact (indicated by circles)
that happens for the GPU at 16 and 32, and for the CPU
at 24 and 38. These artifacts occur whenever the cache
size limit is reached and an additional sequence is re-
quired. The cause for this increase in required cache
size is the padding value of the Max-Pooling layer. This
causes an overlap of data and, as previously discussed for
the convolutional layers, results in redundant operations.
As each block adds new padding, the value increases
with each additional block. The performance improves
at these points since the new sequence does not suffer
from the redundant operations in the first place, but only
if too many blocks are added to it.

1 #omp parallel for

2 foreach(batch):

3 #omp parallel for

4 foreach(channel):

5 ...

Listing 4: PyTorch’s Max-Pooling implementation.

5.2 Full Network Acceleration

Next, we evaluate the acceleration that BRAINSLUG pro-
vides when executing more realistic neural networks.
Figures 11 and 12 show the total execution time when
running the networks with a batch size of 128 for CPUs
and GPUs respectively, while Figures 13 and 14 show
the relative speedup with respect to PyTorch.

While the networks have significantly varying ex-
ecution times ranging from very short (AlexNet) to
quite long (Densenet-161 and Resnet-152), BRAINSLUG
provides a speed up in all cases, with the most pro-
nounced improvements for Densenets on both CPU and
GPU, VGGs with Batch Normalization on GPU, and
Squeezenets on CPU. Note that adding the Batch Nor-
malization layer to the VGG networks has a significant
impact on PyTorch’s computation time, while there is
virtually no change in BRAINSLUG’s case: an effect di-
rectly attributable to BRAINSLUG collapsing the normal-
ization into the previous step.

Table 1 shows BRAINSLUG’s full speed-up results for
all networks on CPU and GPU for batch sizes from 1 to
256. The results clearly indicate that BRAINSLUG out-
performs PyTorch on the GPU with batch sizes bigger
than 8 (except for Resnet-101 and -152), and for all cases
for the CPU.

The results show large performance gains for small
batch sizes when running on the CPU. This is related
to a programming error in PyTorch’s Max-Pooling im-
plementation (see Listing 4). The code uses two nested
OpenMP parallel for loops, which means that only
the outer loop is parallelized over the CPU cores. In the
extreme case of batch size = 1, the entire function uti-
lizes only a single core. In BRAINSLUG we use only
one parallel for loop, iterating over BatchSize ×
Channels elements, so we can always leverage paral-
lelism.

Finally, note that negative values for the GPU batch
sizes 1-4 look significant but in absolute terms they are
not: in these cases the execution time is only a few
milliseconds, while for larger ones, it is hundreds of
milliseconds. This relatively performance difference is
mainly because our implementation is optimized towards
larger batch sizes.

8

A
D

12
1

D
16

1
D

16
9

D
20

1 I
R

18
R

34
R

50
R

10
1

R
15

2
S1

.0
S1

.1
V1

1
V1

1B V1
3

V1
3B V1

6
V1

6B V1
9

V1
9B

Neural Network Model

0

20

40

60

80
Ti

m
e

(s
)

PyTorch
BrainSlug

Figure 11: Comparison of calculation time between Py-
Torch and BRAINSLUG for TorchVision’s neural net-
works (CPU, batch size 128).

A
D

12
1

D
16

1
D

16
9

D
20

1 I
R

18
R

34
R

50
R

10
1

R
15

2
S1

.0
S1

.1
V1

1
V1

1B V1
3

V1
3B V1

6
V1

6B V1
9

V1
9B

Neural Network Model

0

100

200

300

400

500

Ti
m

e
(m

s)

PyTorch
BrainSlug

Figure 12: Comparison of calculation time between Py-
Torch and BRAINSLUG for TorchVision’s neural net-
works (GPU, batch size 128).

A
D

12
1

D
16

1
D

16
9

D
20

1 I
R

18
R

34
R

50
R

10
1

R
15

2
S1

.0
S1

.1
V1

1
V1

1B V1
3

V1
3B V1

6
V1

6B V1
9

V1
9B

Neural Network Model

 0%

 5%

10%

15%

20%

25%

30%

Sp
ee

du
p

2.
7%

12
.0

%
9.

8% 11
.7

%
11

.4
%

6.
9%

3.
8%

2.
6% 3.
4%

2.
7%

2.
5%

20
.4

%
20

.0
%

2.
5% 3.

7%
2.

4% 3.
2%

1.
7% 2.
4%

1.
2% 1.
8%

Figure 13: BRAINSLUG’s speed-up over PyTorch of
TorchVision neural networks (CPU, batch size 128).

A
D

12
1

D
16

1
D

16
9

D
20

1 I
R

18
R

34
R

50
R

10
1

R
15

2
S1

.0
S1

.1
V1

1
V1

1B V1
3

V1
3B V1

6
V1

6B V1
9

V1
9B

Neural Network Model

 0%

10%

20%

30%

40%

Sp
ee

du
p

6.
8%

29
.6

%
21

.8
% 27

.8
%

25
.4

%
7.

9%
17

.2
%

9.
4%

7.
4%

3.
2%

3.
6%

17
.0

%
15

.8
%

16
.6

%
29

.4
%

10
.7

%
24

.3
%

8.
7%

21
.4

%
8.

0%
19

.2
%

Figure 14: BRAINSLUG’s speed-up over PyTorch of
TorchVision neural networks (GPU, batch size 128).

5.3 Detailed Performance Analysis

BRAINSLUG’s performance gains stem from optimizing
some layer types, while leaving others as they are. Here
we provide a more detailed analysis to answer the follow-
ing question: for real-world neural networks, how much
does BRAINSLUG improve the performance of the opti-
mizable layers, and what fraction of the overall runtime
is this optimizable part?

As shown in Table 2, the complexity of the networks
ranges from 27 up to 709 layers, with BRAINSLUG able
to optimize 44 to 64% of them using 8 to 204 stacks. For
those layers, we achieve speed-ups of 321.2 to 842.9%
on the CPU and 5.7 to 222.9% on the GPU (all results are
for a batch size of 128). Again, the speed-up for the CPU
is significantly higher than for the GPU due to PyTorch’s
less-than-optimal CPU implementation. Overall, the op-
timizable layers represent 2.5 to 16.9% for the CPU and
13.7 to 47.4% for the GPU of the total computation time
(% of Total Time columns), with the rest of the time be-
ing spent mostly on convolutional layers. This leads to a
total speed-up of 2.1% to 13.9% for the CPU and 1.1%
and 20.9%. Note that this speed-up only concerns the
pure compute kernel time, and is hence different from
the numbers for batch size 128 in Table 1; the total im-

 1 2 4 8 16 32 64 128 256
Batch Size

 2

 4

 8

16

Ti
m

e/
B

at
ch

 (m
s)

D121 (Py)
D121 (BS)
I (Py)
I (BS)
V19B (Py)
V19B (BS)

Figure 15: Scaling behavior of BRAINSLUG (BS) versus
PyTorch (Py) for different batch sizes.

provement is in fact often higher because, for example,
BRAINSLUG needs fewer memory allocations.

5.4 Batch Size Scaling Behavior
One important parameter for neural network perfor-
mance is the batch size, which represents the number
of independent data parts (e.g., images) that are pro-
cessed at the same time. Most operations can operate
independently on individual batches, which can be lever-
aged for parallelism. Figure 15 shows how PyTorch and
BRAINSLUG scale with respect to increasing batch sizes

9

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
-3.0% -2.9% -0.3% 1.7% 7.7% 11.5% 6.2% 6.8% 7.5% 5.3% 4.5% 2.4% 2.4% 1.9% 2.5% 2.7% 2.7% 3.1%
5.1% 3.0% 4.5% 5.6% 8.1% 9.4% 8.4% 7.9% 7.0% 6.9% 6.9% 6.8% 6.2% 4.8% 6.3% 5.2% 6.9% 7.3%
-9.5% 5.4% 6.3% 22.3% 29.2% 34.0% 32.6% 29.6% 24.9% 15.2% 15.2% 14.9% 11.9% 11.9% 11.8% 10.2% 12.0% 11.9%
-0.2% 3.6% 11.9% 17.8% 24.8% 24.8% 27.4% 21.7% 16.0% 16.8% 13.5% 12.2% 11.6% 10.4% 11.2% 10.1% 9.8% 9.5%
5.4% 7.1% 7.1% 18.8% 26.4% 32.5% 30.8% 27.8% 21.9% 19.1% 18.7% 16.3% 13.6% 12.3% 12.8% 12.8% 11.7% 11.2%
-0.8% -0.1% 19.0% 21.6% 31.7% 35.7% 29.3% 25.4% 18.5% 23.2% 19.9% 11.7% 14.6% 14.4% 13.6% 11.8% 11.4% 12.8%
-51.6% -42.7% -25.8% 6.6% 20.6% 26.9% 22.7% 17.2% 13.1% 6.4% 3.7% 3.9% 0.5% 3.5% 4.0% 3.7% 3.8% 3.5%
-43.1% -30.6% 0.1% 23.6% 20.9% 20.8% 17.6% 9.4% 9.0% 3.0% 1.7% 1.9% 3.5% 2.9% 2.9% 2.3% 2.6% 2.6%
-27.1% -8.5% 6.2% 7.5% 8.8% 10.5% 7.7% 7.4% 4.7% 6.7% 4.5% 3.4% 2.2% 2.7% 2.7% 2.8% 3.4% 3.5%
-3.6% -2.3% -5.2% -3.8% -2.3% -2.4% 6.2% 3.2% 1.7% 4.7% 2.7% 2.5% 2.6% 2.3% 2.0% 2.7% 2.7% 3.1%
0.4% -2.8% -5.8% -3.9% -2.0% -2.5% 5.9% 3.6% 1.1% 5.5% 3.3% 2.2% 1.4% 0.5% 1.3% 1.7% 2.6% 2.7%

-54.0% -44.3% -28.5% 11.6% 12.8% 16.1% 17.5% 17.0% 16.9% 41.1% 31.4% 26.6% 22.8% 26.9% 29.1% 24.1% 20.4% 20.3%
-27.8% -26.0% -20.6% -0.9% 7.8% 12.8% 16.1% 15.8% 15.5% 39.7% 26.2% 22.3% 17.8% 21.1% 32.1% 20.6% 20.0% 21.2%
2.8% 2.2% 5.1% 12.3% 10.8% 14.9% 14.1% 16.6% 16.4% 11.1% 13.2% 10.4% 7.0% 6.5% 5.7% 2.6% 2.5% 2.5%
8.7% 6.0% 11.1% 24.4% 26.0% 26.8% 26.7% 29.4% 30.5% 12.4% 13.1% 10.6% 8.2% 7.3% 6.7% 3.8% 3.7% 3.7%
0.5% 2.2% 4.6% 8.7% 7.7% 9.4% 9.5% 10.7% 11.0% 11.8% 9.4% 6.4% 5.0% 4.5% 4.1% 2.4% 2.3% 2.3%
16.3% 8.2% 12.3% 22.2% 23.8% 23.3% 23.5% 24.3% 24.8% 8.3% 8.2% 8.0% 5.6% 5.2% 5.1% 3.3% 3.2% 3.2%
3.8% -0.7% 0.7% 7.7% 7.5% 8.3% 8.4% 8.7% 8.8% 6.2% 4.4% 5.2% 4.6% 4.1% 3.8% 1.7% 1.7% 1.7%
12.4% 7.4% 11.5% 18.8% 19.5% 18.2% 19.9% 21.4% 22.1% 6.0% 7.3% 7.2% 5.2% 4.8% 4.5% 2.4% 2.4% 2.4%
4.2% 2.2% 4.1% 7.9% 5.2% 4.4% 6.7% 8.0% 8.5% 11.9% 7.7% 5.5% 4.9% 4.0% 3.7% 1.3% 1.2% 1.2%
9.6% 7.4% 11.0% 14.5% 16.6% 14.9% 17.7% 19.2% 20.0% 5.1% 4.9% 4.9% 4.7% 4.2% 4.2% 1.9% 1.9% 1.9%

VGG-19
VGG-19 BN

VGG-16
VGG-16 BN

VGG-13
VGG-13 BN

VGG-11
VGG-11 BN

Squeezenet 1.0
Squeezenet 1.1

Resnet-101
Resnet-152

Resnet-34
Resnet-50

Densenet-201
Resnet-18

Densenet-161
Densenet-169

Densenet-121

AlexNet

G
P

U
 (

N
V

ID
IA

 G
ef

or
ce

 G
T

X
 1

08
0

T
i)

C
P

U
 (

In
te

l X
eo

n
E

5-
26

90
 v

4)

Inception V3

Table 1: BRAINSLUG full speed-up results compared to PyTorch on a CPU and GPU for all neural networks.

Network Opt.
Speed-up [%]

% of Total
Time

Total
Speed-up [%]

Name Layers Opt. Stacks CPU GPU CPU GPU CPU GPU
Alexnet 27 12 8 483.1 72.7 3.0 13.7 2.5 5.8
Inception V3 316 203 103 451.2 27.5 8.7 28.6 7.1 6.2
Densenet-121 429 247 124 411.1 77.3 13.1 47.3 10.5 20.6
Densenet-161 569 327 164 446.9 68.3 10.9 38.6 8.9 15.7
Densenet-169 597 343 172 414.0 72.6 13.9 47.4 11.2 19.9
Densenet-201 709 407 204 415.1 66.5 13.7 47.1 11.0 18.8
Resnet-18 71 39 21 387.5 76.6 4.8 22.2 3.8 9.6
Resnet-34 127 71 37 436.4 60.0 3.6 17.9 2.9 6.7
Resnet-50 177 104 54 348.5 13.7 8.2 24.6 6.4 3.0
Resnet-101 347 206 105 321.2 8.2 6.5 20.7 5.0 1.6
Resnet-152 517 308 156 319.2 5.7 6.3 19.5 4.8 1.1
Squeezenet 1.0 66 31 29 842.9 34.7 4.5 29.3 4.0 7.5
Squeezenet 1.1 66 31 29 457.1 32.3 16.9 33.5 13.9 8.2
VGG11 35 17 10 808.3 113.5 3.8 21.5 3.3 11.4
VGG11 BN 43 25 10 842.9 222.9 4.5 30.2 4.0 20.9
VGG13 39 19 12 661.9 59.7 3.3 19.4 2.8 7.3
VGG13 BN 49 29 12 622.2 159.2 4.0 29.5 3.4 18.1
VGG16 45 22 15 665.2 51.7 2.7 17.2 2.4 5.9
VGG16 BN 58 35 15 620.0 146.7 3.4 26.5 2.9 15.8
VGG19 51 25 18 650.0 44.8 2.5 15.6 2.1 4.8
VGG19 BN 67 41 18 618.2 137.7 3.0 24.6 2.6 14.2

Table 2: For each NN at batch size 128: the number
of layers, how many BRAINSLUG can optimize and into
how many stacks. Opt. Speed Up is the acceleration for
the optimizable layers, % of Total Time is the time the
optimized layers take within the full execution, and Total
Speed Up is the speed-up for the entire network.

for three selected networks. As can be seen, both scale
with batch size but BRAINSLUG performs always best,
showing increasing gains for larger batch sizes.

6 Related Work

In this work we focus on accelerating the forward pass
in deep neural networks on both CPUs and GPUs. Due
to the frequent occurrence of convolutional and dense
layers in these networks (see Figure 1), recent work
has focused specifically on improving the multiply-and-
accumulate (MAC) operations prevalent in these layers.

CPUs and GPUs have libraries that support SIMD or
SIMT-based processing such as Intel’s “single program,
multiple data” (SPMD) compilers. In general, the MAC
operations resulting from convolutional and dense layers
can be mapped to multiplications between two matrices.
Libraries such as cuDNN [4] and cuBLAS [21] for GPUs
and Intel MKL [12] and OpenBLAS [23] for CPUs are
optimized for matrix–matrix operations. Moreover, there
are specialized algorithms that can lead to speed-ups for
the multiply operation in convolutional layers. For in-
stance, performing a fast Fourier transform (FFT) has
been shown to be beneficial for convolutional layers with
certain properties [19]. There are also several other ap-
proaches that reduce the number of expensive operations
required for matrix-matrix multiplications. Examples are
the application of Strassen’s [5] and Winograd’s algo-
rithms [17] for accelerating the processing of convolu-
tional layers. Deep learning libraries such as NVIDIA’s
cuDNN and TensorRT [22] utilize heuristics for choos-
ing the algorithmic method expected to work best for a
given convolutional layer. TensorRT selects different im-
plementations according to the used hardware and op-
timizes memory allocation. Due to the extensive engi-
neering that goes into the design of these heuristics and
implementations, the processing of convolutional lay-
ers is highly optimized and hard to improve on; conse-
quently, BRAINSLUG focuses on improvements to other
commonly-used layer types.

The main disadvantage of TensorRT is that it only
works if all used layers are known to the framework, as it
directly translates the entire network into its own imple-
mentation for NVIDIA GPUs. BRAINSLUG, in contrast,
only replaces parts of the network that it knows. This
enables us to create and explore user-created layers and
still benefit from BRAINSLUG’s improvements. Further,
BRAINSLUG is designed as an extensible platform, al-

10

lowing users to apply its optimizations not only to GPUs
but to all kinds of processors and accelerators.

The algorithmic optimizations discussed so far do not
change the network architecture or the result of the com-
putations. There are several algorithmic tricks one can
apply to trade-off accuracy for efficiency. For instance,
TensorRT can reduce the precision from 32 Bit floating
point to 16-Bit floating point or even 8-Bit integer, which
improves performance but might decrease accuracy. It is
even possible to work with binarized neural networks,
that is, networks that perform binary instead of floating
point operations [10, 6, 26]. There are numerous other
methods that change the structure and parameters of the
original DNN to improve performance. For instance, it
is possible to prune filters during the learning process
which reduces the amount of computation required for
the convolutional layers [18]. In a different line of work,
the network units with low-valued activations are pruned.
This was shown to result in a 11% speed up [1] or a
substantial reduction in power consumption [27]. With
BRAINSLUG, we focus on optimizations that do not alter
the original DNN: both the original and optimized DNN
perform exactly the same operations on the hardware.

Alwani et al. [2] proposed to fuse layers of convolu-
tional neural networks for faster processing on FPGAs,
merging the first two convolutional layers of a neural net-
work. Their method uses a data shifting approach to re-
duce the recomputation of overlapping data regions. This
is quite efficient for FPGAs but is difficult to implement
on CPUs and GPUs, and has the limitation of only being
applicable to no more than two convolutional layers. As
already mentioned, our method does not focus on con-
volutional layers but accelerates the entire network by
aggregating consecutive non-convolutional layers.

Sze et al. [30] discuss different methods for energy-
efficient dataflows on neural network accelerators, sug-
gesting the development of a specialized neural network
accelerator with a mesh-based processing architecture.
In contrast, our method targets off-the-shelf, cheap hard-
ware that provides excellent compute power per dollar.

7 Discussion and Future Work

We have shown that BRAINSLUG (brainslug.info) accel-
erates commonly used deep neural networks by as much
as 41.1% on CPUs and 35.7% on GPUs while requiring
minimal code changes. These improvements are signifi-
cant considering that training such networks on big data
can take up to several weeks. BRAINSLUG’s speed-up
is most pronounced for the more commonly used batch
sizes of 8 and up. For instance, the DENSENET archi-
tectures are usually trained with a per-GPU batch size of
32 [9], a batch size where BRAINSLUG achieves the best
performance improvement. Due to recent results insights

into the benefits of increasing the batch size during train-
ing [29] and the generally growing size of main memory
on GPUs, we expect training batch sizes to further in-
crease in the future.
Extending BRAINSLUG: BRAINSLUG is designed to
make it easy to extend and, as such, provides APIs
that need to be implemented when developing front
and back-ends. Adding a new front-end requires the
biggest effort, since it has to parse through the NN graph
and identify optimizable layers; this cannot be imple-
mented generically as every NN framework uses a dif-
ferent representation. Further, it is necessary to con-
nect BRAINSLUG’s runtime system with the NN frame-
work, so that BRAINSLUG can interact with framework-
specific data structures. For PyTorch, our front-end im-
plementation consists of 270 lines of Python code and
438 lines of C++. To add a new back-end requires much
less work, as only methods to load and execute the de-
vice code are required. In our implementation, we have
299 lines of C++ code (code + header files) for NVIDIA
GPUs (including integration of the NVIDIA profiling li-
brary) and 165 lines of code for CPUs.
Limitations: Although in theory our stacking method
can be applied to several different kinds of layers, we
figured out that in certain cases it is not beneficial.
While we were able to achieve significant speed ups for
element-wise and pooling layers, we have not been able
to improve linear and convolutional layers. For convo-
lutional layers the problem is that the operation itself
uses overlapping data areas. Because of this overlap,
BRAINSLUG would force neighboring data paths to have
to do redundant calculations. As convolution is already
a compute-bound operation, and since BRAINSLUG op-
timizes memory accesses and not the actual computa-
tion, these redundant calculations reduce overall perfor-
mance. For linear layers the problem is more conceptual.
A linear layer can be represented by a matrix–matrix
multiplication. Instead of executing this as a matrix–
matrix multiplication, BRAINSLUG would strip it down
to multiple vector–matrix multiplications. The problem
of this method is that the processor needs to load the en-
tire weight matrix for each output vector. In contrast,
in a matrix–matrix multiplication the weight matrix can
be significantly better reused, resulting in less memory
transactions compared to multiple vector–matrix multi-
plications.
Future Work: We plan to enhance BRAINSLUG by
adding more front-ends to support a larger variety of
frameworks. Further, we plan to expand our optimiza-
tions to training, as this is the most time consuming oper-
ation for neural networks; we expect BRAINSLUG to be
able to achieve equivalent speed-ups for it. Finally, we
are also targeting additional types of hardware including
vector or neural network processors.

11

http://brainslug.info

References

[1] ALBERICIO, J., JUDD, P., HETHERINGTON, T.,
AAMODT, T., JERGER, N. E., AND MOSHOVOS,
A. Cnvlutin: Ineffectual-neuron-free deep neural
network computing. In ACM SIGARCH Computer
Architecture News (2016), vol. 44, IEEE Press,
pp. 1–13.

[2] ALWANI, M., CHEN, H., FERDMAN, M., AND
MILDER, P. Fused-Layer CNN Accelerators. In
Proc. MICRO (2016).

[3] BERKELEY ARTIFICIAL INTELLIGENCE RE-
SEARCH. Caffe.
http://caffe.berkeleyvision.org.

[4] CHETLUR, S., WOOLLEY, C., VANDERMERSCH,
P., COHEN, J., TRAN, J., CATANZARO, B., AND
SHELHAMER, E. cudnn: Efficient primitives for
deep learning. arXiv preprint arXiv:1410.0759
(2014).

[5] CONG, J., AND XIAO, B. Minimizing compu-
tation in convolutional neural networks. In Inter-
national conference on artificial neural networks
(2014), Springer, pp. 281–290.

[6] COURBARIAUX, M., HUBARA, I., SOUDRY, D.,
EL-YANIV, R., AND BENGIO, Y. Binarized neu-
ral networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1.
arXiv preprint arXiv:1602.02830 (2016).

[7] GOOGLE BRAIN TEAM. TensorFlow.
https://www.tensorflow.org.

[8] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vi-
sion and pattern recognition (2016), pp. 770–778.

[9] HUANG, G., LIU, Z., WEINBERGER, K. Q., AND
VAN DER MAATEN, L. Densely connected convo-
lutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition
(2017), vol. 1, p. 3.

[10] HUBARA, I., COURBARIAUX, M., SOUDRY, D.,
EL-YANIV, R., AND BENGIO, Y. Binarized neural
networks. In Advances in neural information pro-
cessing systems (2016), pp. 4107–4115.

[11] IANDOLA, F. N., HAN, S., MOSKEWICZ, M. W.,
ASHRAF, K., DALLY, W. J., AND KEUTZER,
K. Squeezenet: Alexnet-level accuracy with
50x fewer parameters and <0.5mb model size.
arXiv:1602.07360 (2016).

[12] INTEL. Intel Math Kernel Library (Intel-MKL).
https://software.intel.com/en-us/mkl.

[13] INTEL. Intel SPMD Program Compiler (ISPC).
https://ispc.github.io.

[14] INTEL. Intel Threading Building Blocks (TBB).
https://www.threadingbuildingblocks.

org.

[15] JIA, Y., SHELHAMER, E., DONAHUE, J.,
KARAYEV, S., LONG, J., GIRSHICK, R.,
GUADARRAMA, S., AND DARRELL, T. Caffe:
Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM inter-
national conference on Multimedia (2014), ACM,
pp. 675–678.

[16] KRIZHEVSKY, A., SUTSKEVER, I., AND HIN-
TON, G. E. Imagenet classification with deep con-
volutional neural networks. In Proceedings of Neu-
ral Information Processing Systems (2012).

[17] LAVIN, A., AND GRAY, S. Fast algorithms for con-
volutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (2016), pp. 4013–4021.

[18] LI, H., KADAV, A., DURDANOVIC, I., SAMET,
H., AND GRAF, H. P. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016).

[19] MATHIEU, M., HENAFF, M., AND LECUN, Y.
Fast training of convolutional networks through
ffts. In International Conference on Learning Rep-
resentations (ICLR) (2014).

[20] NAIR, V., AND HINTON, G. E. Rectified linear
units improve restricted boltzmann machines. In
Proceedings of the 27th international conference
on machine learning (ICML) (2010), pp. 807–814.

[21] NVIDIA. cuBLAS.
https://developer.nvidia.com/cublas.

[22] NVIDIA. TensorRT.
http://developer.nvidia.com/tensorrt.

[23] OPENBLAS PROJECT. OpenBLAS.
http://www.openblas.net.

[24] PYTORCH CORE TEAM. PyTorch.
https://pytorch.org.

[25] PYTORCH CORE TEAM. TorchVision.
https://github.com/pytorch/vision.

12

http://caffe.berkeleyvision.org
https://www.tensorflow.org
https://software.intel.com/en-us/mkl
https://ispc.github.io
https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
https://developer.nvidia.com/cublas
http://developer.nvidia.com/tensorrt
http://www.openblas.net
https://pytorch.org
https://github.com/pytorch/vision

[26] RASTEGARI, M., ORDONEZ, V., REDMON, J.,
AND FARHADI, A. Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In
European Conference on Computer Vision (2016),
Springer, pp. 525–542.

[27] REAGEN, B., WHATMOUGH, P., ADOLF, R.,
RAMA, S., LEE, H., LEE, S. K., HERNÁNDEZ-
LOBATO, J. M., WEI, G.-Y., AND BROOKS,
D. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In ACM
SIGARCH Computer Architecture News (2016),
vol. 44, IEEE Press, pp. 267–278.

[28] SIMONYAN, K., AND ZISSERMAN, A. Very
deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556
(2014).

[29] SMITH, S. L., KINDERMANS, P.-J., AND LE,
Q. V. Don’t decay the learning rate, increase the
batch size. In International Conference on Learn-
ing Representations (ICLR) (2018).

[30] SZE, V., CHEN, Y.-H., YANG, T.-J., AND EMER,
J. S. Efficient processing of deep neural networks:
A tutorial and survey. Proceedings of the IEEE 105,
12 (2017), 2295–2329.

[31] SZEGEDY, C., VANHOUCKE, V., IOFFE, S.,
SHLENS, J., AND WOJNA, Z. Rethinking the in-
ception architecture for computer vision. CoRR
abs/1512.00567 (2015).

[32] UNIVERSITE DE MONTREAL. Theano.
http://deeplearning.net/software/

theano/.

13

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

	Introduction
	Background on Neural Networks
	BrainSlug: Method Principles
	Depth-First Parallelism
	Aggregation Detection

	BrainSlug: Architecture and Implementation
	Compile Phase
	Execution Phase
	PyTorch Front-end and API
	CPU and GPU Backends

	Evaluation
	Stacked Layers Acceleration
	Full Network Acceleration
	Detailed Performance Analysis
	Batch Size Scaling Behavior

	Related Work
	Discussion and Future Work

