
Heuristic Header Error Recovery

for Corrupted Network Packets

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Florian Schmidt

aus Köln

Berichter:

Prof. Dr.-Ing. Klaus Wehrle
Prof. Dr.-Ing. Wolfgang Kellerer

Tag der mündlichen Prüfung: 23. 10. 2015

Abstract

Wireless communication provides many advantages over wired communication, such
as easier deployment due the lack of cabling infrastructure and higher mobility for
users. However, one of its most important downsides is the significantly higher er-
ror rate. This is exacerbated by the fact that traditional Internet communication
enforces perfect bit-by-bit correctness of each packet. While this ensures high reli-
ability in the received data, it is very inefficient: even a single bit error leads to a
packet drop, leading to high packet loss even at comparatively low bit error rates.
Such a behavior is especially wasteful when considering error-tolerant applications.
For example, many media codecs have been designed to tolerate and mask bit errors
in their data.

To better support these types of transmissions, suggestions in the past have aimed at
tolerating errors in the payload portions of packets, the most well-known example
being UDP-Lite. However, these solutions suffer from several drawbacks. First,
they suffer from low acceptance unless they ensure they stay fully interoperable
with standard protocols. Second, they focus on single protocols, without taking the
layered nature of protocol combinations into account. This is problematic because
error tolerance in one protocol can be rendered useless by combining it with a lower-
layer protocol that drops all packets that contain errors. Third, focusing only on
payload error tolerance means any errors in the header portions of packets still
lead to drops. Especially in small packets, headers form a large part of the packet,
limiting the effectiveness of payload error tolerance.

In this dissertation, we design and present solutions that address these shortcom-
ings. First, by introducing error tolerance into existing standard protocols, we en-
sure interoperability. Second, by taking the whole stack into account, we ensure
that packets are not dropped before error tolerance can recover them. Third, by
allowing errors to also occur in the header portions of packets, we increase the ef-
fectiveness of error tolerance. This last contribution means that control information
in packet headers is not reliable any more. Thus, packets for one application could
be misattributed to another. Hence, we will present solutions to identify the correct
application a packet belongs to, even under header errors, as well as ways to repair
corrupted header information, to prevent this misattribution.

Our first contribution is a solution to introduce header error tolerance and repair into
existing protocols at the examples of IPv4, UDP, and RTP. As a second contribu-
tion, we design a protocol-independent approach that can identify which connection
a packet belongs to, as well as repair certain errors in protocol headers, without
requiring any knowledge about the protocols it works on. Our final contribution
focuses on the popular 802.11 wireless technology. To fully unlock the potential of
header error recovery in 802.11, we design a novel rate adaptation algorithm that
can adapt to changes in channel quality without relying on acknowledgments, which
is not possible with state-of-the-art solutions.

Kurzfassung

Drahtlose Kommunikation bietet gegenüber drahtgebundener viele Vorteile, so zum
Beispiel eine einfachere Einrichtung aufgrund des Verzichts auf Kabel-Infrastruktur
sowie höhere Mobilität für Benutzer. Andererseits ist einer der größten Nachteile die
im Vergleich deutlich höhere Übertragungsfehlerrate. Dieses Problem wird durch die
in klassischer Internetkommunikation erzwungene exakte Bit-für-Bit-Korrektheit der
übertragenen Pakete noch verschärft. Dies garantiert zwar eine hohes Maß an Zuver-
lässigkeit, ist aber sehr ineffizient: selbst ein einzelner Bitfehler führt zum Verwerfen
des gesamten Paketes und damit zu hohem Paketverlust bereits bei niedrigen Bitfeh-
lerraten. Ein solches Verhalten ist besonders verschwenderisch bei fehlertoleranten
Anwendungen. So gibt es beispielsweise Media Codecs, die speziell im Hinblick auf
Toleranz und Maskierung von Bitfehlern entwickelt wurden.

Zur besseren Unterstützung solcher Anwendungsarten wurden in der Vergangen-
heit Ansätze vorgeschlagen, die Fehler in den Nutzdaten von Paketen tolerieren;
das bekannteste Beispiel ist hier UDP-Lite. Allerdings leiden diese Verfahren unter
mehreren Nachteilen. Erstens leiden Sie unter geringer Akzeptanz, wenn sie kei-
ne vollständige Interoperabilität mit bestehenden Standardprotokollen sicherstellen.
Zweitens konzentrieren sie sich auf einzelne Protokolle, ohne dabei das Schichtenmo-
dell und die daraus resultierenden Kombinationen von Protokollen in Betracht zu
ziehen. Dies führt zu Problemen, wenn Protokolle niederer Schichten fehlerbehafte
Pakete verwerfen. Drittens werden Pakete mit Headerfehlern weiterhin verworfen.
Vor allem bei kleinen Paketen bilden Header einen großen Teil des Pakets, so dass
eine Fehlertoleranz lediglich für Nutzdaten von beschränkter Wirkung ist.

In dieser Dissertation werden Lösungen für diese Nachteile entworfen und präsen-
tiert. Erstens wird durch das Einbinden von Fehlertoleranz in bestehende Protokolle
eine Interoperabilität mit anderen Systemen sichergestellt. Zweitens wird durch das
Betrachten des gesamten Netzwerkstapels ein vorzeitiges Verwerfen von Paketen
verhindert, bevor Fehlertolernzmechanismen das Paket behandeln können. Drittens
wird durch das Zulassen von Fehlern im Headerbereich die Effektivität von Fehlerto-
leranz erhöht. Eine Herausforderung ist in diesem Zusammenhang die Tatsache, dass
fehlerhafte Headerinformationen zu einer Fehlzuordnung des Pakets führen können.
In diesem Fall werden Pakete einer Anwendung fälschlicherweise einer anderen zu-
geordnet. Die Vermeidung solcher Fehlzuordnungen, selbst bei Datenfehlern in den
Identifikationsdaten der Paketheader, stellt einen der Hauptbeiträge dieser Disser-
tation dar.

Im ersten Teil dieser Dissertation wird ein Konzept für Fehlertoleranz anhand einer
Implementierung in IPv4, UDP und RTP beispielhaft vorgestellt und untersucht. Im
zweiten Teil wird ein protokollunabhängiger Ansatz vorgestellt, der die Zugehörigkeit
von (potentiell fehlerbehafteten) Paketen zu einer Verbindung erkennt, ohne über
Wissen über die verwendeten Protokolle zu verfügen. Schließlich wird ein neuartiger
Ansatz für Ratenadaption in 802.11-Netzwerken vorgestellt, der aufgrund seiner im
Gegensatz zu Standardverfahren von ACK-Paketen unabhängigen Adaptation die
effektive Verwendung von Fehlertoleranz in WLAN-Netzen ermöglicht.

Acknowledgments

This dissertation concludes a long chapter of my life that I spent in Aachen, from
my days as a young and confused undergraduate student to a “finished” PhD. This
transformation, and the resulting work you are reading, would not have possible
without the support and input by many people. Even though I am sure I will
unjustly forget some of them in the following, I want to thank at least some of those
that had the greatest influence on both me and my work:

My first thanks rightfully belong to my advisor, Klaus Wehrle. Many years ago,
he put me on track as a young PhD student on a project that eventually would
eventually branch out in many directions and form this dissertation. Through all
this time, he gave me the support I needed, and fostered a creative research group
with immense freedom to pursue your goals. I also want to thank Wolfgang Kellerer
not only for agreeing to act as a second opponent, but also for valuable feedback
during the final parts of this work.

While Klaus made sure that I found a great environment to flourish in, it is Elias
Weingärtner who I am most grateful to for paving the way to even enter this envi-
ronment. Elias picked me up as an insecure Diploma student and saw more scientific
capability in me than I did myself. Without his encouragement, I would have never
pursued a PhD.

During my work on this dissertation, I had the chance to collaborate with and advise
many brilliant students, which helped me shape my work the way it stands now.
Thank you, Caj-Julian, David, Dominik, Erwin, Mario, Matthias, Niklas, René, and
Tobias, for our many discussions and your dedication to your work. I especially want
to thank Anwar and Martin for their scientific rigor and high motivation to push
their thesis topics to the limit. Both of them decided to pursue a PhD themselves,
and I am sure that soon, I will see them defend brilliant dissertations.

Over the years, I met many great people at COMSYS who I wish to thank. Ismet and
Raimondas, for being the best office mates to wish for, both for scientific discussions
and non-scientific small talk. Jan and Torsten, for the same reasons, and for enduring
my advice. Matteo and Oliver for, both in their own and different ways, opening
up new insights for me into how academia works. Tobi, for making sure I would
always go the extra mile to make every idea and result that little critical bit better
and more well-rounded. Stefan, for teaching me more about scientific writing than
anybody else, and for finding the most incredible movies for after-work movie nights.
Petra and Ulrike, for always working around organizational issues and solving them
for us. Kai, Rainer, and Dirk, for keeping my own and the whole chair’s work–life
balance in order. Additionally, all the others I did not mention here specifically: you
made (and make) COMSYS a great place.

Finally, I want to thank my brother and my parents for their unconditional love
and support in all the years. Without encouraging my curiosity from an early age,
I might not have ended up a scientist; without the computer we finally bought after
my nagging for a long time (and whose operating system I killed several times before
I learned to fix it—sorry for all the lost files!), I might not have ended up a computer
scientist.

Contents

1 Introduction 1

1.1 Challenges in Heuristic Header Error Recovery 3

1.2 Target Environment and Observations 4

1.3 Research Questions . 5

1.4 Contributions . 6

1.4.1 Protocol-Specific Heuristic Header Error Recovery 7

1.4.2 Protocol-Independent Heuristic Error Recovery 7

1.4.3 Rate Adaptation for ACK-Less Communications 8

1.5 Heuristic Header Error Recovery . 9

1.6 A Note on Previously Published and Joint Work 10

1.7 Outline . 11

2 Background and Related Work 13

2.1 Internet Protocols . 13

2.2 On Errors . 18

2.3 On Checksums . 21

2.4 On Acknowledgments . 24

2.5 Wireless LAN . 26

2.6 Related Work . 33

2.6.1 Error Tolerance . 33

2.6.2 Reducing Retransmissions . 37

2.6.3 Header Compression . 40

3 Refector: Protocol-Specific Heuristic Header Error Recovery 43

3.1 Introduction . 44

3.2 Refector for Stateless Protocols . 49

3.2.1 Header Fields Categorization 49

3.2.2 Recovery of Vital Fields . 52

3.2.2.1 Heuristic Recovery of Header Fields 52

3.2.2.2 Port Allocation . 54

3.2.2.3 Analytical Approximation of Port Selection Perfor-
mance . 56

3.2.3 Implementation . 58

3.2.4 Evaluation over 802.11 . 60

3.2.4.1 Experimental Setup 61

3.2.4.2 Influence of Packet Size on Packet Loss 62

3.2.4.3 Packet Delivery Rate 63

3.2.4.4 Misattribution . 66

3.2.4.5 Encryption . 68

3.2.4.6 Performance . 71

3.2.5 Summary . 72

3.3 Use Case: Refector-ISCD . 72

3.3.1 Introduction to ISCD . 73

3.3.2 Experimental Setup . 75

3.3.3 Packet-Switched ISCD . 76

3.3.4 Refector-ISCD . 78

3.3.5 Summary . 79

3.4 Refector for Stateful Protocols . 80

3.4.1 The Real-Time Transport Protocol 80

3.4.2 Header Fields Categorization 82

3.4.3 Stream Identification: The Learner–Predictor Scheme 85

3.4.4 Implementation for RTP in libortp 87

3.4.5 Evaluation . 87

3.4.5.1 Experimental Setup 88

3.4.5.2 Misattribution . 90

3.4.5.3 Field Errors . 91

3.4.5.4 Reduction of Misattribution 92

3.4.5.5 Markov Chain Model Performance 95

3.4.6 Summary . 98

3.5 Summary and Discussion . 98

4 Protocol-Independent Heuristic Header Error Repair 103

4.1 Introduction and Motivation . 104

4.2 Design . 106

4.2.1 Design Considerations . 106

4.2.2 Algorithmic Design . 107

4.3 Implementation . 112

4.3.1 Integration into the Network Stack 112

4.3.2 Repairing Header Contents . 114

4.3.3 Protocol Adaptation . 115

4.4 Evaluation . 116

4.4.1 Experimental Setup . 116

4.4.2 Classification Accuracy . 118

4.4.3 Classification Speed . 121

4.4.4 Classifier Convergence Speed 124

4.4.5 Summary . 126

4.5 Classification via Extrinsic Factors: Size and Inter-Arrival Time . . . 126

4.6 Conclusion . 131

5 OFRA: Rate Adaptation for 802.11 Networks Without Acknowl-

edgments 133

5.1 Introduction and Motivation . 134

5.1.1 The Role of ACKs in Data Communications 134

5.1.2 Conceptual and Practical Considerations 136

5.1.3 Summary . 139

5.2 Concept . 140

5.2.1 Scarcity of Information and Provision of Feedback 140

5.2.2 When to Send Feedback: Choice of Optimal Rates 142

5.2.2.1 Modulation . 143

5.2.2.2 Coding . 146

5.2.2.3 Throughput . 149

5.2.3 How to Send Feedback: A New MAC Frame Type 153

5.3 Related Work . 156

5.4 Implementation . 161

5.5 Evaluation . 163

5.5.1 Simulation Model . 163

5.5.2 Simulation Setup and Topology 163

5.5.3 Comparison Algorithms . 164

5.5.4 Evaluation results . 166

5.5.4.1 Throughput-Related Metrics 167

5.5.4.2 Rate Selection Accuracy 171

5.5.4.3 Error Burst Lengths 173

5.5.4.4 Summary . 175

5.6 Extensions and Future Works . 176

5.7 Conclusion . 178

6 Conclusion 181

6.1 Contributions and Results . 181

6.2 Future Work . 182

6.3 Final Remarks . 185

A Analytical Approximation for Port Choice Misattributions 187

B BER Calculation for 16- and 64-QAM 189

Abbreviations and Acronyms 193

Bibliography 197

Niggle was a painter. [...] There was one picture in partic-
ular which bothered him. It had begun with a leaf caught in
the wind, and it became a tree; and the tree grew, sending
out innumerable branches, and thrusting out the most fan-
tastic roots. [...] Soon the canvas became so large that he
had to get a ladder, and he ran up and down it, putting in
a touch here, and rubbing out a patch there.

—J. R. R. Tolkien, Leaf by Niggle

1
Introduction

Wireless communication has become more and more important in recent years. With
the proliferation of devices such as notebooks, smartphones, and tablets, which often
do not even provide a wired network connection any more, the last hop of Internet
connections has become more and more dominated by wireless communications.
There are many reasons for this development. For example, wireless communication
provides more convenient network access, since it allows a degree of mobility for
devices and users that a wired connection cannot.

However, this convenience comes at a price. Wireless connections typically exhibit
a much higher error rate than wired connections. Packet error rates (that is, the
fraction of packets with at least one bit error in them) of 20–25% are not unusual in
Wireless LAN (WLAN) communications [SHP+12]. This is due to channel effects
such as attenuation, fading, and interference, which act on the wireless channel,
while they are largely absent in wired connections. To overcome this effect, wireless
networks use concepts to reduce and detect errors. Sophisticated modulation and
coding with Forward Error Correction (FEC) techniques are used to prevent errors.
However, since the magnitude of the channel effects varies over time, a complete
prevention of errors is impossible. To recognize such errors, checksums are added
to the transmitted data. In case of transmission errors which corrupt the data,
the checksum will not match the data any more, and the packet will be discarded
and potentially retransmitted. This so-called Automatic Repeat reQuest (ARQ)
scheme has proven successful to ensure bit-by-bit correctness and allows reliable
data transmissions, even in challenging conditions, and hence enables applications
such as file transfers to work properly in wireless networks.

While ARQ is successful in guaranteeing reliable transmissions, it is also a potentially
very inefficient scheme. Checksums can only signal whether a packet is completely
correct or contains at least a single bit error, not which bits are corrupted. Even
if only a single bit is corrupted, ARQ hence retransmits the complete packet, even

2 1. Introduction

though most data was already correctly received. Thus, the retransmission occupies
the wireless channel for longer than necessary and reduces the overall goodput. In
addition, it introduces delay, since the packet cannot be delivered or forwarded
before a successful retransmission has occurred.

This behavior is especially wasteful when considering that there are some application
types that do not necessarily require bit-by-bit correct transmissions to function
well. A prime example are media streaming applications, which have become very
popular in recent years and by now account for up to 25% of all Internet traffic
[GDFM+12, LAN+12]. For such applications, media codecs exist that are able to
tolerate and mask bit errors in their received payload data (e.g., [ETSI00,SSJ+08])
and hence do not require perfect bit-by-bit correctness. On the other hand, those
applications benefit from low latency between sender and receiver. This is especially
true if they stream live media or are used for interactive communication, such as in
the case of Voice over IP (VoIP). For example, the European Telecommunications
Standards Institute (ETSI) and the International Telecommunication Union (ITU)
both recommend an end-to-end delay of no higher than 150 ms [ETSI06, ITU03]
for VoIP. For this class of applications, completely correct data (for example, as
enforced by checksum checks and retransmissions) that arrives too late is practically
useless, while corrupted data that arrives in time can be put to use [HRNK04].

This motivates approaches that hand corrupted data to these error-tolerant appli-
cation instead of dropping and retransmitting the packet. Thus, these approaches
not only reduce latency, because the packet can be processed immediately instead
of waiting for a retransmission, but also increase the overall network throughput,
because the time otherwise spent for the retransmission can be used for other data
transmissions. The probably most well-known scheme to support such an approach
is UDP-Lite [LDP+04], a transport-layer protocol that is derived from UDP. While
UDP secures its header and the complete payload with a checksum, UDP-Lite allows
to reduce the checksum coverage by only covering a subset of the payload, or to not
cover the payload at all. If an error occurs in the unsecured payload, the UDP-Lite
checksum will not produce a mismatch, and hence, UDP-Lite will not discard the
packet.

Thus, payload-error-tolerant protocols such as UDP-Lite take an important step
towards error tolerance. However, there are some shortcomings, which we will discuss
at the example of UDP-Lite. First, on its own, without any support by the lower
layers, UDP-Lite cannot adequately provide error tolerance. As soon as one of the
lower layers employs a checksum that covers the whole packet, any payload errors
will lead to drops on that layer, before the packet ever reaches UDP-Lite. This is
not merely a theoretical problem, since checksums that cover the complete frame
are the norm on the MAC layer, and are employed by, for example, WLAN. Second,
since UDP-Lite is a different transport-layer protocol from UDP, it requires support
from both sender and receiver to set up such an error-tolerant transmission. Finally,
payload tolerance, while definitely helpful, is most beneficial for large payloads.
When using small payloads, as is generally the case in audio streaming and VoIP,
headers form a sizable portion of a packet, sometimes more than 50%, as shown in
Figure 1.1. In such a situation, errors in a large portion of the packet still lead to
packet loss, reducing UDP-Lite’s potential.

1.1. Challenges in Heuristic Header Error Recovery 3

802.11 IPv4 Lite RTP payload

Figure 1.1 UDP-Lite supports error-tolerance for a variable portion of its payload, which
includes the application-layer payload (white) and potentially application-layer protocol headers
(light gray). As long as errors are in this portion, UDP-Lite will not drop the packet. However,
errors in its own header or lower-layer headers (dark gray) still lead to packet drops. In small
packets, those portions can form more than 50% of the packet. The example shows the packet
layout of an AMR Full-Rate [ETSI00] audio transmission that produces 32-byte packets, with
typical headers in a WLAN scenario. Header and payload portions are to scale.

In this dissertation, we start from the basic idea of UDP-Lite as well as its limitations
and design a system that allows for practical error tolerance by including the lower
layers. Furthermore, we introduce error tolerance into already existing protocols
instead of designing new ones, which facilitates easier and incremental deployment,
since no support from the sender is required. Finally, and most significantly, we also
take a conceptual step forward and tolerate errors not only in the payload, but also
in the header portions of packets. However, doing so leads to novel challenges.

1.1 Challenges in Heuristic Header Error Recovery

By tolerating errors in the header portions of packets, we accept the fact that infor-
mation in these packet headers may be corrupted due to bit errors. However, while
there are error-tolerant applications, network stacks are not designed with tolerance
to errors in mind, since those errors are expected to be prevented by checksums. Con-
sequently, we have to consider the consequences of this decision to tolerate header
errors.

These consequences are governed by the functions that headers fulfill. There are two
such main functions. On the one hand, headers contain protocol-specific information
such as version fields, or sequence numbers in a stateful protocol. A wrong sequence
number in a streaming application can, for example, reduce quality, because data is
played back at the wrong time. On the other hand, headers contain demultiplexing
information, that is, information about which connection a packet belongs to. In a
packet-switched network, this information is vital to identify the correct communica-
tion end-point of a packet that is transmitted via a channel that is shared between
several connections. Errors in parts of headers that contain this demultiplexing
information can therefore lead to packets being identified as belonging to another
connection than they actually do. This misassignment or misattribution (we will use
the two terms interchangeably in this dissertation) is highly problematic, because it
can be detrimental or even fatal to error-sensitive connections such as file transfers:
data is sent to a communication end-point (an application) that it doesn’t belong
to, corrupting the transmitted file.

From this simple example, it is clear that simply ignoring all errors in received
packets is not viable. We need to make sure that header errors do not produce

4 1. Introduction

negative side-effects. It is especially important to prevent misassignments due to
their potential for fatal events. Therefore, we need to be able to correct header
errors that could trigger such events.

As checksum mismatches only signal that at least one bit error occurred somewhere
in the packet, but do not yield any information about the locations of such errors,
we have to work with very limited information. In effect, all we have available is
the received header content, which we cannot rely on to be correct. Therefore, we
employ heuristics1 to deduce the original header contents. Doing so, we have two
ways of proceeding:

1. We can either require our repair to be perfect. To do this, we employ heuris-
tics to repair the headers, then check the repaired headers (and potentially
payload) against the received checksum, and only accept the packet if the
checksum matches. This is a safe solution, but also provides limited improve-
ment: Errors in the checksum itself would lead to such drops even if the repair
was completely successful, as would payload errors if the protocol’s checksum
secures both header and payload. Furthermore, as we will see later, there are
large header areas in standard protocol headers that are both irrelevant in
certain situations and unrepairable, such as the TTL field in the IPv4 header.
Errors in such fields would still lead to packet drops.

2. Motivated by the above observation, we can accept that even after error re-
covery, a checksum might not match. This approach is more risky because
incorrectly repaired headers are not caught by the checksum, but has a higher
potential performance gain.

This dissertation will focus on the more comprehensive second alternative because it
promises higher rewards. Since thus we have to accept (1) that headers may contain
errors even after all potentially employed forms of FEC, and (2) that packets might
be imperfectly repaired, there is no way to reconstruct headers with absolute cer-
tainty. Employing heuristics to recover from header errors incurs the risk that those
heuristics choose wrongly, leading to the aforementioned misassignments. Much of
the work of this dissertation focuses on recovering as many corrupted packets as
possible, while preventing and/or minimizing the chance of misassignments. We do
so by designing robust heuristics and analyzing their results in scenarios that range
from minimal to extremely high Bit Error Rates (BERs). To support robust heuris-
tics, we make an important observation that stems from their use in an environment
that we consider a typical use case.

1.2 Target Environment and Observations

From the opening motivating observation of this chapter – the strong increase in
wireless connections for the last hop to an end host – follows the target environment

1Which heuristics we use will be shortly explained in Section 1.4 and presented in detail in the
respective main chapters.

1.3. Research Questions 5

that we focus on in this dissertation. Such a scenario comprises a wireless access
point that doubles as a gateway to the Internet, and one or several users with com-
puters that act as wireless stations. The error-prone wireless link hence forms the
last hop of the connection. A typical example of such a scenario is a WLAN setup
as used in many households, companies, and public spaces. The strong increase in
devices such as smartphones, tablets, and notebooks which can only communicate
wirelessly and do not provide wired network connectors will make wireless connec-
tions the dominant system for last-hop Internet connectivity, if it has not already
done so.

By focusing on the last hop, we can leverage a small, but significant information
advantage when compared to any arbitrary network node in the Internet. In such a
case, our heuristics reside on the receiving end host. We can therefore make use of
the observation that an end host knows, at any given point in time, all its currently
open connections. It furthermore knows the expected contents of those header fields
that identify each communication end-point (e.g., ports in transport-layer protocols
such as TCP and UDP), because this is the information that the network stack,
matches against the header values of each received packet during processing. To
a lesser degree, this is also true for state information such as sequence numbers.
This is different from a router somewhere within the Internet, which does not have
information about all currently ongoing connections between hosts that it forwards
data for.

This information is important because it can be relied on, while header contents of
corrupted packets are unreliable. We hence have information against which to check
header fields in corrupt packets, and thus facilitate repair. Furthermore, header
information that is purely concerned with the routing of a packet to an end-host is
not relevant any more once the packet has reached that host. Consequently, errors
in those fields are irrelevant and can be ignored.

This observation can be compared with the real-world example of how mail couriers
deliver postal packages with erroneous addresses. Because they know the locality
they serve, they can tolerate errors in the recipient’s name or street address. More-
over, errors in certain fields of a postal address, for example, the country code, do not
prevent local delivery, because the couriers will not consider them in their delivery
attempt.

We will show in this dissertation how this knowledge about the recipients of packets
can be leveraged to design highly performant and effective heuristics for header error
recovery.

1.3 Research Questions

We now condense the previous challenges and observations into five research ques-
tions that we will answer over the course of this dissertation:

6 1. Introduction

Q1: Is it possible to heuristically recover from header errors?
As a first step, we will have to design a system that can heuristically recover
from errors. Furthermore, this system must be usable in practice.

Q2: Is it possible to effectively prevent misattributions?
If our system can recover from errors, but often repairs header incorrectly, its
usefulness is dubious. We will have to show that we can prevent misattributions
and their potentially catastrophic effects.

Q3: Can we increase the robustness of protocol header information, while staying
100% compatible to protocol specifications?
By introducing additional robustness, we can improve the identification process
to support the prevention of misattribution, while at the same time increasing
recovery rates. However, because we do not want to require any special support
from the sender, we have to restrict solutions to those that do not change the
protocol behavior.

Q4: How much protocol-specific knowledge does a heuristic header error recovery
scheme need to work properly?
Designing a system to recover from header errors in certain protocols is cer-
tainly helpful. However, if it is possible to conduct such recovery even without
protocol-specific knowledge, we could significantly broaden our solution by
supporting legacy protocols for which no detailed protocol-specific solutions
exist.

Q5: How can we unlock the full potential of error-tolerant transmissions in WLAN?
The presented heuristic header error tolerance concepts are designed to be as
independent of the underlying MAC and physical systems as possible to allow a
use in a wide range of different network technologies. However, to ensure their
practical usefulness, effective support in WLAN, as today’s most widespread
wireless technology, is highly desirable.

We will affirmatively answer these questions by demonstration, by designing concepts
to heuristically identify which connection a packet belongs to even under header
errors and show their practical applicability in real-world systems at both low and
high error rates.

1.4 Contributions

To address the questions stated above in the presented target environment, we
consider the concept of heuristics across the whole network stack. First, we show
how heuristics can be tailored to specific protocols [SAAW11, SOW13a]. Next, we
present how classification can be used to create protocol-independent error recov-
ery [SHW14]. Finally, we will solve a WLAN-specific challenge to error tolerance
that otherwise prevents us from unlocking the full potential of heuristic header error
recovery in WLAN networks [SHP+12]. In the following, we will present the salient

1.4. Contributions 7

points of each concept. While doing so, we will also point out how these concepts
relate to the above research questions, and visualize this relationship in Figure 1.2.

1.4.1 Protocol-Specific Heuristic Header Error Recovery

For Refector (Latin for mender, repairer), our first solution for heuristic header
error recovery, we analyze several protocols and their headers. For this analysis, we
choose IP and UDP [SAAW11] as well as RTP [SOW13a], because these protocols
are designed to support non-reliable or streaming transmissions, and as such serve
as good examples of protocols employed in error-tolerant transmissions. To an end
host, the fields in those headers are of unequal importance, to the point where we can
categorize them into groups of vital and don’t-care fields. Don’t-care fields are simply
ignored: we do not recover from errors in them, but neither is this necessary. Vital
fields, such as ports and addresses, are used to find the best matching connection,
and are afterwards reconstructed to match the expected values of that match.

Such a search for a best match requires a distance metric. We show that, despite
its simplicity, Hamming distance is an effective metric that allows us to create a
heuristic header error recovery system that significantly improves the recovery rate
over payload-only error tolerance, and thus answer Question 1.

To mitigate the problem of misassignments, we first focus on the most damaging
case, in which a corrupted packet is misassigned to a non-error-tolerant application.
Such an error can be fatal to, for example, a file transfer. We completely prevent
such misassignments by requiring error-tolerant applications to signal their error-
tolerance when they open a connection. If a corrupted packet is heuristically assigned
to a connection that is not flagged as error-tolerant, it will be discarded instead. To
reduce the risk of (non-fatal) misassignments to error-tolerant connections, we focus
on making the heuristic as robust as possible by introducing a novel port selection
method for transport-layer protocols. This answers Question 3, since such a method
increases robustness to errors while not introducing any change in protocol behaviors.
The effect of this is reflected in evaluations, which show that misassignment is an
extremely rare occurrence, answering Question 2.

1.4.2 Protocol-Independent Heuristic Error Recovery

The previous approach works very well and can be fine-tuned to specific protocols.
However, it incurs a non-trivial overhead in the design phase for each such protocol
that is to be supported. For each new protocol, protocol headers have to be analyzed
with regard to their significance for connection identification, and the methods have
to be implemented. Protocols without such specifically implemented support cannot
benefit from heuristic header error recovery.

We therefore investigate a machine-learning-based classification approach [SHW14]
that replaces this design stage and can heuristically identify a packet’s connection

8 1. Introduction

Application!
Layer!

Transport!
Layer!

Network!
Layer!

MAC!
Layer!

Q3! Q1! Q2! Q4! Q5!

Refector!
!

(Protocol-Specific!

Heuristic Header!

Error Recovery)!

Protocol-!
Independent!

Heuristic!

Header!

Error!
Recovery!

OFRA!
(ACK-Less!

Rate!
 Adaptation)!

Figure 1.2 Visualization of our main contributions, how they relate to our research questions
(note the ordering), and on which protocol layers they tackle those questions. Note that
visualization only considers implemented solutions. For example, there is no fundamental
conceptual problem that prevents the usage of Refector on the MAC layer, but this has not
been investigated in our work.

without knowledge about the used protocols. For each connection, we analyze in-
coming correct packets to learn characteristic bit patterns that occur in those pack-
ets. Corrupted packets are then classified by matching them against those patterns,
assigned to a connection, and headers repaired according to the learned patterns.
Thus, there is no need for the classification algorithm to have any knowledge about
the protocols it works on, which gives us an answer to Question 4. This significantly
reduces implementation overhead and broadens applicability.

Our results show that the algorithm we designed can identify important header
fields within a few packets from connection setup, and provides reliable identification
(Question 1) without noticeable misassignments (Question 2).

1.4.3 Rate Adaptation for ACK-Less Communications

While we designed the previous two approaches to be generally applicable and in-
dependent of any specific MAC implementation, we also considered their use in
practical systems. Due to its wide-spread use as wireless technology on the last hop,
full support for WLAN (IEEE 802.11) is highly desirable. To effectively utilize error
tolerance schemes, including heuristic header error recovery, in WLAN, we need to
solve an additional challenge specific to that system.

As explained in the introduction, error-tolerant systems do not benefit from ARQ
and the resulting retransmissions. However, while it is possible to disable retransmis-
sions in WLAN by disabling acknowledgments of successful transmissions (ACKs),
such ACK-less traffic is not well-supported by today’s state-of-the-art rate adapta-
tion systems. Because they use ACKs to recognize transmission successes, ACK-less

1.5. Heuristic Header Error Recovery 9

packets are treated as never successfully received, reducing transfer rates to the
minimum and greatly reducing performance.

We therefore develop an On-Demand Feedback Rate Adaptation (OFRA), which
instead monitors channel conditions and feeds back information to the sender, so that
it can effectively choose a rate without relying on ACKs. OFRA allows effective and
accurate rate adaptation for ACK-less traffic, thereby unlocking the full potential of
error tolerant transmissions in WLAN, answering Question 5. Furthermore, network
throughput with OFRA is higher than with state-of-the-art algorithms even for
standard (ACKed) traffic. Thus, OFRA provides benefits even if no error-tolerant
transmissions are used at all.

1.5 Heuristic Header Error Recovery

In this dissertation, we will rigorously investigate the concept of heuristic header
error recovery. To make clear the meaning of this term, we will explain each con-
stituent.

Our approach is heuristic, because it uses methods to reconstruct what the orig-
inal contents of headers were, which might have been corrupted by transmission
errors. It is heuristic because we lack information to guarantee coming to a certain,
unambiguous, and correct decision. First, while checksum mismatches will tell us
that some errors occurred during transmission, they do not contain any information
about how many errors occurred, or which parts of the packet are corrupted. In the
best case, the headers might not be corrupted at all, with errors being confined to
the (application-layer) payload of the packet, but we cannot recognize this, either.
The best we can do is hence to take the received data, match it against ongoing
connections, and find the connection we believe the packet most likely belongs to.
This means that we have to guess a good match without being able to guarantee
that it always will be the correct match.

Since our approach is heuristic, there is a risk that we choose the wrong connection.
A packet that should have belonged to connection A is then incorrectly assigned to
connection B. We term this event a misattribution or misassignment. Since this is a
highly problematic event that could potentially have catastrophic outcome for some
connections, we need to make sure to keep this problem in check. As we will see in
this dissertation, we will do this by setting up our heuristic header error recovery
so that connections that are so sensitive to errors that even a single misattribution
could cause a catastrophic failure are guaranteed to never see such an event, and
by designing our matching heuristics so that error-tolerant applications will witness
these events extremely rarely. Thus, our approach also is a heuristic in second way:
it does not guarantee to always provide the correct and perfect solution, but we will
show that it comes close enough for practical considerations.

Our approach deals with header errors because solutions to allow payload error
tolerance already exist, and because applications that are error-tolerant likewise do.
However, tolerating header errors is a field not yet investigated in detail.

10 1. Introduction

Finally our approach considers error recovery. Recovery implies two factors: toler-
ance and repair. To be able to recover from errors, it is first necessary to be able
to receive the corrupted packets. To do so, checksum checking has to be disabled or
changed so that packets are not discarded prematurely. This is the first step of error
tolerance. Next, if header fields are corrupted, especially those that identify the cor-
rect communication end-point (the socket), it is necessary to heuristically identify
which socket the packet is destined for. By doing so, we will also know which infor-
mation was contained in those identifying fields before corruption. From this follows
repair, in that we now can repair those fields to the values that they should contain.
We will see that we generally are not able to repair all fields, because some fields
will contain information that cannot be deduced from knowing which connection a
packet belongs to. Errors in those fields will still remain even after repair, but their
potentially wrong content will be tolerated.

Thus, we arrive a the term “heuristic header error recovery”.

1.6 A Note on Previously Published and Joint Work

This dissertation heavily bases on previously published work by the author, which
in turn was based on Diploma, Bachelor, and Master theses by students who co-
authored those papers. Throughout this work, those papers and theses are typically
not referenced directly; such references would otherwise litter the text. If no reference
is given, work in the following chapters or sections is based on the listed papers and
theses, respectively:

• Section 3.2 is based on “Refector: Heuristic Header Error Recovery for Error-
Tolerant Transmissions” [SAAW11], for which parts of the implementation
were done by Mario Göttgens in his Bachelor Thesis “Heuristic Packet Repair
for UDP/IP in the Linux Network Stack” [Göt11].

• Section 3.3 is based on “Iterative Source-Channel Decoding with Cross-Layer
Support for Wireless VoIP” [BLV+10], a joint work with Tobias Breddermann,
then a Ph.D. candidate at the Institute of Communication Systems and Data
Processing (IND) at RWTH Aachen.

• Section 3.4 is based on “A Heuristic Header Error Recovery Scheme for RTP”
[SOW13a] and the technical report “Support for Error Tolerance in the Real-
Time Transport Protocol” expanding on it [SOW13b], which in turn are partly
based on work done by David Orlea in his Bachelor Thesis “Error Tolerance
for the Real-Time Transport Protocol” [Orl12].

• Chapter 4 is based on “Piccett: Protocol-Independent Classification of Cor-
rupted Error-Tolerant Traffic” [SHW14], for which some fundamentals were
laid in Martin Henze’s Diploma Thesis “A Machine-Learning Packet-Classifi-
cation Tool for Processing Corrupted Packets on End Hosts” [Hen11], and
a refined algorithm was developed in Matthias Lederhofer’s Diploma Thesis

1.7. Outline 11

“Classifying Corrupted Network Packets for Error-Tolerant Streaming Appli-
cations” [Led12].

• Chapter 5 is based on “A Receiver-Based 802.11 Rate Adaptation Scheme with
On-Demand Feedback” [SHP+12], which in turn is based on Anwar Hithnawi’s
Master Thesis “An On-Demand Rate-Adaptation Mechanism for IEEE 802.11
Networks” [Hit11], co-authored and co-advised,respectively, with Óscar Puñal,
then a Ph.D. candidate at the Mobile Network Performance Group at RWTH
Aachen, who went on to amend this work for additional use cases. Several
of the extensions proposed in Section 5.6 were devised in collaboration with
Mario Göttgens, who implemented and evaluated them in his Master Thesis
“On-Demand Feedback Rate Adaptation in the Linux Network Stack” [Göt13].

1.7 Outline

The remainder of this dissertation is structured as follows. In Chapter 2, we will
present information about concepts that are fundamental to the topics of this dis-
sertation, as well as work related to the field of error tolerance. We will present the
concept of protocol-specific heuristic header error tolerance in Chapter 3, as well
as give some insight into the practical implementation and evaluation results that
show the feasibility and efficacy of our approach. In Chapter 4, we will do the same
for protocol-independent heuristic error recovery. After we have presented these
two error recovery strategies, we will focus on how rate adaptation for ACK-less
communication can be implemented in 802.11 in Chapter 5. To this end, we will
first explain why ACK-less communication is important for error tolerance. Then,
we will explain our on-demand feedback rate adaptation mechanism, how it works
and how it is implemented. Afterwards, we will provide in-depth evaluation to show
the effectiveness of this novel rate adaptation scheme. Finally, we will conclude this
dissertation in Chapter 6.

12 1. Introduction

Science is made up of so many things that appear obvious
after they are explained.

—Frank Herbert, Dune2
Background and Related Work

Before we start with the presentation of our contributions in the following chapters,
we will give some insight into topics that are relevant for this dissertation. In the first
part of this chapter (Sections 2.1–2.5), we will give basic information about topics
that form the basis of concepts that we assume as being known in later chapters.
While many of the topics presented here will be discussed in more detail in later
chapters, the basic knowledge contained in this chapter is vital for the understanding
of many of the concepts of our contributions.

In Section 2.1, we will give a short introduction into the concept of communication
protocols and protocol headers. We will then discuss why errors occur in transmis-
sions, with a special focus on wireless transmissions, in Section 2.2 and the closely
related topic of how checksums are employed to recognize these errors in Section 2.3.
The concept of acknowledgments will be introduced in Section 2.4. Section 2.5 con-
cludes the background section with a short overview over the basic concepts of
Wireless LANs as defined in the IEEE 802.11 standard.

In the second part of this chapter (Section 2.6), we will discuss related work relevant
to the topics of this dissertation, specifically to heuristic header error tolerance.
We will present related work from the fields of error-tolerant protocols, heuristic
error recovery, reduction of retransmissions via partial packet recovery or packet
reconstruction, and header compression.

2.1 Internet Protocols

Protocols fulfill an important job in data communications. They are especially
important in packet-switched communications, that is, in communications in which
there is no dedicated, exclusive physical connection between the sender and the
receiver. Instead, the connections run over a shared medium, called line or channel,

14 2. Background and Related Work

payloadAH

payloadPH

payloadSH

payloadTH

payloadNH

payloadLH LF

symbols 1 Physical Layer

2 Link Layer

3 Network Layer

4 Transport Layer

5 Session Layer

6 Presentation Layer

7 Application Layer

Figure 2.1 The 7-layer OSI model. When sending, each layer adds a header or footer to the
payload, and passes it on to the lower layer, which considers the received data as its payload.
Conversely, headers are removed bottom-up when receiving.

or a concatenation of such lines, shared by network participants. This is the case in
the Internet, in which a large number of shared lines forms a mesh-like network, with
special gateway or router nodes to forward the data along the correct lines to reach
the receiver. To facilitate this sharing, participants group their data into packets,
and those packets are then sent one after the other. Hence, in such a system, data
from multiple users is multiplexed onto a common line.

This requires that each packet contains identification information that allows the
routers to identify which connection a packet belongs to, and forward it accordingly,
so that it eventually reaches the receiver. This information is typically carried
in the form of an address that identifies the receiver and is carried in a piece of
data called the header, which is prepended to the actual data (the payload). The
specification of what additional information is carried in the header, how to write
and read it, and specific communication behavior resulting from this information,
forms a communications protocol.

Protocol Layer Models

In practical Internet communications, packets carry more than one header, and
more than one protocol is used for each connection. This is due to the modular
design of proctors: each protocol serves a specific purpose, and by using several
protocols in combinations, the desired combined behavior can be reached. Protocols
are organized in the form of a stack, in which several layers of protocols exist.

A widely-used theoretical model for this design is the OSI model, which defines 7
layers of protocol stacked on top of each other. A representation of the model is
given in Figure 2.1. Each layer in the model fulfills a certain job: for example,
the application layer only deals with the data that is to be sent to the receiver;
the network layer deals with addressing the packet so that intermediate gateways
know how to reach the receiver; and the physical layer transforms between the digital

2.1. Internet Protocols 15

application payloadAH

Transport-layer payloadTH

Network-layer payloadNH

Link-layer payloadLH LF

Physical-layer symbols 1 Physical Layer

2 Link Layer

3 Network Layer

4 Transport Layer

Application Layer

Figure 2.2 The Internet model reduces the number of layers compared to the OSI model.
Note that the physical layer is not part of the specification, but is implicitly assumed to exist.

data and physical waveform representations of it that can be sent over a physical line
(e.g., copper, fibre, wireless). On each layer, there may be several different protocols
available. For each connection, one of those protocols is chosen that facilitates
communication (e.g., it would not make sense to choose a physical-layer protocol
designed for copper wires when using a fibre connection). Each layer is transparent
to the others: at the sender side, a protocol pn on layer n receives a chunk of data
from protocol pn+1, which contains that protocol’s header, plus all the data it had
received in turn from protocol pn+2. In turn, it will add information that it requires
the receiver to have in its own header, and forward payload and header to protocol
pn−1. In some cases, a footer may be added instead or in addition to a header.
In Figure 2.1, this is done by the Link-layer protocol, a typical behavior of such
protocols, which tend to put checksums there. On the receiver side, the opposite
process is done: the stack is traversed from bottom to top, with each protocol
removing its header and passing the payload up to the next protocol.

While the OSI model is widely used for theoretical modeling, a simpler model model
is used in practice. One of the reasons is that layers 5 to 7 in the OSI model can
easily be done by the applications themselves. The Internet model, the standard
protocol stack for communication over the Internet, is shown in Figure 2.2. Note
that the RFC-standardized version of the model [Bra89] only mentions four layers
and does not concern with the physical layer. It implicitly assumes its existence,
but considers it part of the network adapter hardware and hence out of scope of its
specification. The number of different choices of protocols on each layer which are in
practical use is very diverse: while each application can create its own application-
layer protocol and hence, their number is very high, the number of transport- and
network-layer protocols is very small. In today’s practical use on the Internet, only
three protocols are used: TCP and UDP on the transport layer, and IP on the
network layer (though there exist two versions of IP in common use, IPv4 and
IPv6). The number of link-layer protocols is again higher: each link technology
typically defines its own Medium Access Control (MAC) protocol, a term that in
practice is used interchangeably with the term link-layer protocol. Popular examples
are Ethernet for wired connections and 802.11 for wireless connections, while mobile
phone networks use their own link-layer technologies and protocols.

16 2. Background and Related Work

This discrepancy leads to the term of the “narrow waist of the Internet” [Ros08],
in which two protocol layers are governed by a very small number of protocols.
The practical reason for this is that these layers form the basis of compatible inter-
networking: the transport layer creates an end-to-end connection between two end
hosts; the network layer ensures that packets can reach the end host of this end-to-
end connection by implementing routing of packets among intermediate gateways.
To fulfill these roles, all participants in the Internet need to speak the same protocols
on these layers, which means that any new protocol on these layers suffers from the
fact that it needs to be deployed throughout the Internet before it can be used. The
fact that, despite the pressing problem of running out of IPv4 addresses, IPv6 took
many years to be deployed in most of the Internet underlines this problem.

For this dissertation, this narrow waist is beneficial because recovery techniques
that benefit protocols on the network and transport layer immediately have the
opportunity to produce gains for virtually all users of network communications.
Consequently, a large fraction of this dissertation will focus network- and transport-
layer protocols as examples to implement heuristic header error recovery.

The Role of Headers

We already mentioned the role of headers in transmitting protocol-specific informa-
tion. The arguably most important one (at least within the context of this work)
that a header contains is the demultiplexing information: On a link which is shared
by many connections from different users, it is important to recognize which packet
belongs to which receiver. This information is important on layers 2, 3, and 4. The
link-layer protocol is specific to the currently used link, and as such contains the
layer-2 address (the MAC address) of the next hop that should receive the packet
(called a frame in the context of layer-2 communications). To determine this next
hop, intermediate routers inspect the layer-3 address (the IP address). Via a routing
table that assigns each IP address range the corresponding MAC address of the next
hop, routing is realized in the Internet. By using the IP address, the packet can be
globally routed from the sender to the receiver. At the receiver, the demultiplexing
information in the layer-4 header becomes important, which is given in the form of
a port number. This port number identifies which of the numerous connections an
end host might have open at any point in time a packet belongs to on that end host.

In addition to this demultiplexing information, headers can contain much additional
information that is specific to the protocol. One field that is commonly contained in
the header is the next-protocol field. In a layer-n protocol, it contains information
about which protocol was used on layer n+1. Thus, the receiver always knows which
protocol handler needs to process the packet on the next higher layer. Another
common field is the checksum, which can secure either the header alone or both
header and payload, and allows the receiver to recognize potential data corruptions
during transport of the packet. Note that a protocol on layer n whose checksum
secures the complete packet only will secure what it sees of the packet, that is, its
own layer-n header as well the layer-n payload. Other fields can contain a hop count
which is decreased at every intermediate hop and prevents infinite cyclic routing of

2.1. Internet Protocols 17

packets in case of misconfiguration of routes; sequence numbers that allow a protocol
to recognize packet loss and reordering; or various flags (single-bit fields) that notify
the receiver of certain conditions.

Sockets and Connections

One effect of the fact that protocols are designed to be as transparent as possible
to other, higher-layer protocols that use them, is that sending and receiving data
over the Internet is relatively easy for applications. The standard way of using
connections under such commonly-used Operating Systems (OSs) as Linux, Unix
derivatives, and Windows, is to create a so-called socket. To set up a socket, the
application has to provide information such as the destination address and port, and
which transport-layer protocol to use. Afterwards, the socket can be used like an
ordinary file,2 using the standard read and write procedures available on the OS.

Thus, any ongoing connection in a host maps to a socket that it was opened with.
Conversely, every socket represents an ongoing connection for which data can be
sent or received.

Note that by using this terminology, we somewhat extend the notion of a connection.
In most literature, “connection” is only used for information exchange between two
network participants for which a common context has been established. Thus, data
communication via TCP, which requires setup of this context, is named a TCP
connection. Conversely, data communication via UDP does not set up a context (at
least not on the transport layer, as opposed to TCP), and as such, the term “UDP
connection” is generally not used [TW11,KR13].

However, in this dissertation, we will use the term “UDP connection” to denote the
fact that an application has opened a socket to receive UDP packets from another
network participant. The main reason is one of convenience: there does not appear
to be a concise equivalent of the term “connection” for UDP communications, and
replacements such as “opened sockets awaiting reception of UDP datagrams” or
“ongoing exchange of data (via UDP)” are cumbersome and inelegant.

While the above mentioned references tie the term “connection” to a setup of a
common context, for us, the most important part is not that a connection setup
has occurred, but that some application is waiting to receive data. Our notion of
“connection” is hence more abstract and, in a literal sense, high-level, because it is
concerned with the setup of an intent to communicate on the application layer by
creating a socket.

2Or, more correctly, an ordinary file descriptor. A socket is treated as a stream, not a regular
file, the difference being that ordinary files typically allow the user to seek (jump within the data
contained in the file), while a stream requires sequential reading and writing, and does not allow
seeking.

18 2. Background and Related Work

2.2 On Errors

One of the fundamental properties of data communications is that errors can occur
during the process. In the following, we will discuss shortly why this is the case,
why this especially is a problem for wireless communications, and what can be done
to overcome this problem.

Data communication relies on analog signals. Even digital communication will have
to convert the digital information into analog signals at some point. In fact, this
is not specific to communications: data storage is effectively analog, as well. This
conversion between digital and analog signals is the job of the modulator, which
encodes the digital information in analog form onto an analog baseband channel at
a certain carrier frequency. This translation does not have to use a bit-by-bit repre-
sentation of the binary information: several bits can be, and for performance reasons
generally are, combined into one so-called physical layer symbol. To transmit N bits
in one symbol, an alphabet of 2N distinct symbols is needed. These symbols can
then be modulated onto a carrier wave in different ways, for example, by modifying
the amplitude, the frequency, or the phase of the signal, each symbol changing the
chosen criteria by different values. Demodulation occurs on the receiver’s side by
sampling the received analog values over that connection and retranslating them
first into symbols and afterwards bits. As the number of distinct symbols increases
(and all factors that we will abstract from here, such as bandwidth, stay the same),
the possible differences between symbols decrease, as there is only a limited range
of values available.

During transmission of a signal, as the waves cover the distance between sender
and receiver, several effects act on the them. The first effect is the path loss that
attenuates the signal. This attenuation depends on many factors, such as the fre-
quency of the carrier wave (higher frequencies typically suffering more), the medium
through which the signal propagates, and of course the distance between sender and
receiver. In so-called free space models, which assume both sender and receiver to be
in a completely empty area, floating in vacuum, the attenuation of electromagnetic
waves is assumed to be in a quadratic relationship to the distance: if distance is
doubled, the attenuation quadruples, and signal power at the receiver consequently
is reduced to one quarter. In more realistic scenarios with obstacles, attenuation is
even stronger. This effect further reduces the differences between symbols, making
it harder to distinguish between them.

The second effect acting on the channel is noise. Typical sources of noise are due to
unavoidable imperfections in the hardware, so-called thermal or Johnson–Nyquist
noise, or from inadequately shielded electronic devices. The third effect acting on the
channel is interference. This is the result of other transmissions that are received by
the receiver at the same time as the intended signal, leading to superposition of the
two signals. These superpositions can result in a stronger (constructive interference)
or weaker (destructive interference) signal. In its weakest form, this can be nearly
indistinguishable from noise, for example, if the source of the interference is another
sender at a considerable distance. At closer distances, however, interference can
lead to total loss of information, because the superposition changes the signal to

2.2. On Errors 19

(a) Original wave (b) Wave after channel effects

Figure 2.3 Example of channel effects acting on a sine wave. Assume a simple sine wave
was sent by a sender. At the receiver, the signal has suffered from path loss (overall reduced
amplitude), fading (reduction in amplitude over time) and noise.

the point that the symbols are unrecoverable. A sender can also interfere with
itself at a receiver: this typically occurs due to multipath propagation, in which a
signal, when meeting an obstacle such as a wall, is scattered, that is, reflected in
several different directions. After such reflections, the copies of the signal will have
to travel different distances to the receiver and thus be received in multiple copies
which arrive slightly offset from each other in time, leading to an interference of
the signal with itself, a phenomenon termed inter-symbol interference, for its effect
that one transmitted symbol interferes with an earlier or later symbol of the same
transmission. Depending on the strengths of each signal, the effects can range from
mild to severe. Such interference generally is not static over time; as the environment
changes and signal reflectors move, whatever minutely, the strength of interference
changes, and with it the measured amplitude of the signal. These time-dependent
effects are termed fading.

The distinction between noise and interference can be somewhat vague, in that
both act on the signal in the same way, by superpositioning unwanted changes onto
it. Typically, the distinction is made by source. Interference is other signals that
interfere, while noise is any unwanted modification of the signal from sources that
are not recognizable as communication signal, and is often considered a random
distortion, such as in the case of Gaussian noise, which is a popular noise model in
simulations and analytical models.

Figure 2.3 gives a simplified example of channel effects acting on a sine wave. As
can be seen, noise has distorted the sine wave pattern, and path loss and fading have
reduced the wave’s magnitude, which also changes over time.

To get a better understanding of the point at which errors occur, constellation
diagrams are a helpful tool. These diagrams are used to visualize Quadrature Phase-
Shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM) modulations,
two widely-used types of modulation in digital communications (for example, in
WLAN), in which the phase of the signal changes, and those phase changes are
measured by the receiver by regular sampling of the received analog signal. By

20 2. Background and Related Work

combining two orthogonal signals, that is, two signals that are independent of each
other, such as the sine and the cosine function, these modulations can at least encode
two bits in every symbol, by phase-shifting (or refraining to shift) either of the two
constituent signals. Even more bits per symbol are reached by higher-order PSK
or QAM modulations, which either use more fine-grained phase-shift steps, or add
amplitude modulation to phase shifting, or a combination of both. For our purposes,
it is simply important to know that different physical-layer symbols can be visualized
by constellation points in a two-dimensional plane, each dimension visualizing the
phases in one of the orthogonal signals.

Figure 2.4a shows the constellation points for QPSK, in which the four different
possibilities for phase modulation are denoted by points in a two-dimensional plane.
These are the expected values for received signals: when regularly sampling the chan-
nel, each of the receiver’s readings should, under perfect conditions, fall exactly onto
one of those points. When noise is introduced, the readings become less accurate,
and the data points form a cloud around each constellation point (cf. Figure 2.4b).
The demodulator takes each imperfect reading and decides which symbol to report
by calculating the Euclidean distance to each constellation point and taking the clos-
est point’s bits as result. Note that the constellation points are ordered in a form of
Gray coding, in which the points which decode to information with larger Hamming
distance have a larger Euclidean distance to each other, minimizing the number of
bit errors. Such errors occur once the noise becomes so strong that samples read by
the demodulator are closer to the wrong constellation point than the correct one.
Under high-noise conditions, such as in Figure 2.4c, this can occur regularly and
will lead to errors in the received data. This also gives a visual understanding of the
tradeoff between robustness and speed of different modulations: as the number of
bits per symbol is increased, speed increases, but also more points have to be added
to the constellation diagram. As more points are added, the distance between points
decreases, and errors occur at lower noise levels.3

It should be noted here that an error during demodulation is not tantamount to
packet errors. To offset occasional demodulation errors, error-correcting codes can,
and usually are, used. These allow the correction of a certain number of bits within
a data block by introducing redundancy, with said redundancy being the deciding
factor of error-correction power: the more redundancy is introduced, the more errors
will be able to be corrected. This forms a tradeoff between robustness (being able
to correct more potential errors) and overhead (not being able to send as many data
bits in the same time).

We will go into more details about modulation, coding, and their effect on robustness
and throughput when we investigate rate adaptation in Chapter 5. For now, it should
suffice to understand the following:

No modulation and no coding, however robust, can guarantee error-free communi-
cation. For every modulation, we can introduce enough noise that demodulation
errors will occur, and with noise being a random effect, a situation that corrupts at

3Provided other factors are kept equal; for example, increasing the amplitude increases the
distance between points in the constellation diagram, but effectively simply means increasing the
signal-to-noise ratio.

2.3. On Checksums 21

00

01

10

11

(a) constellation diagram (b) Low-noise samplings (c) High-noise samplings

Figure 2.4 Constellation diagram for QPSK. The four possible symbols are visualized in a two-
dimensional plane, each dimension denoting values of one of the two constitutent orthogonal
signals. The points denote the sample values expected at the sampling instants under no errors
(left). As noise increases, the actual readings scatter around the expected values. As long as
noise is low (center), the correct results can be recovered by taking the closest constellation
point to the reading by Euclidean distance. As noise increases (right), readings divert from the
correct constellation points so strongly that other points are closer: errors occur.

least one symbol will occur eventually. Or, figuratively, in the picture of Figure 2.4:
however far we spread out the constellation points from each other by removing them
farther from the origin (which, in effect, means an increase in amplitude, that is,
transmission power), there exists a situation in which noise is strong enough to move
a sampling point closer to another, wrong constellation point. Coding does not solve
these problems absolutely: no matter how much redundancy is introduced, random
noise will eventually, however unlikely, corrupt every single symbol in some packet,
overcoming even the most robust error-correcting codes. There is no possibility to
guarantee error-free communication.

Of course, as the modulation and coding become more robust, it becomes increas-
ingly unlikely that enough errors occur to lead to residual errors after demodulation
and decoding. However, these extremely robust modulation and coding techniques
also become increasingly impractical, being extremely inefficient in situations with
less noise. In practical scenarios, the goal is not to prevent errors at any cost, but to
keep them at a rate that is low enough not to detract from the overall performance.
In Chapter 5, we will discuss the concept of rate adaptation in detail. One of the
tasks of rate adaptation is therefore to find a good tradeoff between the robust-
ness and overhead as channel, and switch between different modulations and coding
strengths as channel conditions change to stay at that tradeoff point.

2.3 On Checksums

Since it is not possible to create total reliance, and increasing reliance via error-
correcting codes leads to increasing overhead, a typical approach is to send a small
code with the packet that does not aid in correcting, but at least allows detection

22 2. Background and Related Work

of errors. The simplest of these codes is the parity, in which only one bit is added
to a message. This bit is set to 0 or 1 to guarantee that the number of 1-bits is
either always odd or always even, depending on implementation. This, however, is
not a very robust method to detect errors: if an even number of bit errors occurs in
a message, then the parity bit will not recognize the error.

For more reliable error detection, we need more sophisticated codes. The state-of-
the-art in network communications, especially on the MAC layer, are Cyclic Redun-
dancy Checks (CRCs) [PB61], which are based on special generator polynomials that
have been chosen to detect errors. These polynomials are represented as elements of
GF (2), a Galois Field of order 2, that is, in binary representation. A simple example
is the polynomial x4 + x + 1, which is represented as 10011. The bit stream that is
to be secured by the CRC has a number of zeroes appended to it equal to the degree
of the polynomial, and the bitstream is then divided by the generator polynomial
in binary division, which is equal to eXclusive OR (XOR) operations. While the
quotient of the division is ignored, the remainder is added to the outgoing data, re-
placing the zeroes added in the first step. These added bits form the checksum. An
example of the CRC operation for a short example packet with the simple x4 +x+1
CRC is given in Figure 2.5. At the receiver’s side, the data, with the checksum, is
divided by the same generator polynomial. Since the sender added the remainder of
the division to the sent data, the division is expected to not produce any remainder
on the receiver’s side. Hence, if the result of the division is 0, the packet is accepted.
This is what we mean when we speak of “matching checksums” in the following: the
checksum added to the packet lead, on the receivers side, to an acceptance decision.
Conversely, if a checksum check on the receiver’s side does not produce a result of
0, we speak of a “checksum mismatch” or a “broken” or “corrupted” checksum.

This position of the checksum as the remainder, added to the least significant bits
of a packet, is one of the reasons that CRC checksums are often added to the packet
as a footer, instead of forming part of the header.4

Note that CRCs, just as parity bits, cannot guarantee error detection with absolute
certainty, though their failure risk is much lower. Since CRCs are shorter than the
packets they secure, there are always several packets with different contents that
share the same CRC. The goal of a good CRC polynomial is to detect as many
possible error cases as possible, especially those deemed likely to occur in certain
situations. For example, the CRC-32 polynomial x32 + x26 + x23 + x22 + x16 + x12 +
x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1, which yields a CRC of length 32 (4 bytes)
and is widely used, for example, in Ethernet [IEEE12a] and WLAN [IEEE12b], can
detect all single bit errors, all error bursts up to a length of 32, as well as any larger
bursts of odd length [TW11, p. 235]. On the other hand, in a worst-case scenario,
only 4 flipped bits in certain positions inside a packet of sizes typically used in
network communications can already lead to non-detection: the packet contains
errors, but the checksum matches. This is suboptimal, and it has been shown that

4Another reason is that this setup allows a just-in-time calculation of the CRC at the sender’s
side: the CRC calculation can be done with XOR gates added to shift registers, which the packet
can pass while it is already being prepared for sending, or even sent. The result of the CRC
calculation is available the instant the packet has cleared the shift register, and the checksum can
then be added to the end of the bit stream.

2.3. On Checksums 23

Division: 1 1 0 1 0 0 1 : 1 0 0 1 1

Calculation: 1 1 0 1 0 0 1 0 0 0 0 : 1 0 0 1 1
1 0 0 1 1

1 0 0 1 0
1 0 0 1 1

1 1 0 0 0
1 0 0 1 1

1 0 1 1 0
1 0 0 1 1

1 0 1

Resulting packet: 1 1 0 1 0 0 1 0 1 0 1

Figure 2.5 Example of a CRC checksum calculation for a simple 8-bit packet and the generator
polynomial x4 +x+1. A number of zeroes equal to the degree of the polynomial are appended
to the packet, which is then divided by the binary representation of the polynomial. The
remainder is added in place of the added zeroes.

other CRCs of the same length do not suffer from this shortcoming, and can increase
the minimum Hamming distance for an undetectable error from 4 to 6 for similar
packet sizes [Koo02].

Another checksum approach is used by IPv4, UDP, and TCP to secure its header.
In this case, a 16-bit checksum is used, which, in the words of the RFC [Pos81], is
calculated as “the 16 bit one’s complement of the one’s complement sum of all 16 bit
words in the header” (and payload, in the case of TCP and UDP). This effectively
means to split the header (with the checksum field itself assumed to be 0) into 16-bit
blocks, calculate the sum of all those blocks, take the carry bits that do not fit into
the 16 bits, add them to the sum, and then invert it. So, for example, a checksum
over the three values 0x9CBB, 0xD2A3, and 0xEAD0 would produce a sum of 0x25A2E.
Rolling over the carry bits produces 0x5A30, whose one’s complement is 0xA5CF.
This checksum has the disadvantage that as few as 2 bits can lead to undetectable
errors. On the other hand, it is uniquely suitable for a protocol such as IP. Since the
IP header contains the Time to Live (TTL) value, which is decremented at every
hop, the header contents change at every intermediate routing system, and require a
recalculation of the checksum. The layout of this checksum allows updating without
having to do a full recalculation [Rij94].

To summarize, checksums are not a perfect measure to detect errors in packets:
there always exist bit patterns that cannot be recognized by the checksum unless
it contains at least as much information as the packet itself, defeating its purpose,
especially since the checksum itself also has to be transmitted and hence is suscepti-
ble to bit errors.5 However, checksums can be designed in ways that reduce the risk

5Furthermore, because a checksum cannot correct errors, a large checksum is undesirable be-
cause it increases the packet size and hence the risk of having at least one bit error in the packet,
without offsetting this by error-correcting techniques, effectively increasing the risk that the packet
is considered corrupted.

24 2. Background and Related Work

of missing an error to exceedingly rare corner cases. Consequently, checksums are
generally considered a reliable measure to detect errors in packets: if the checksum
matches, the packet is assumed to be correct; if it fails, then the packet is assumed
to contain errors.6

Because checksums cannot exactly localize the error in the packet (because other-
wise, they would be able to correct the error, making them error-correcting codes),
they can only decide whether or not a packet contains at least one bit error. If an
error occurs, the standard behavior of packet-switched networks is to discard the
packet. This is a conservative approach that ensures that no transmitted payload
will contain errors after transmission, and that no control information in the headers
is corrupted that will interfere with packet processing. However, in a system that
guarantees perfect bit-by-bit transmission of payload data from sender to receiver,
this alone is not enough: the data needs to be retransmitted, to give it another
chance to arrive at the receiver, this time in pristine, error-less condition. To ensure
that all data is indeed transmitted, a feedback mechanism between receiver and
sender is required.

2.4 On Acknowledgments

This feedback mechanism is typically a form of acknowledgments. In its original
form, an acknowledgment is an information that a packet was received correctly,
explicitly signaled from the receiver to the sender of the message. After reception,
a special acknowledgment message is sent as feedback. If the original sender re-
ceives the acknowledgment, it considers the packet as correctly transmitted, and
ends the transmission event for this packet; otherwise, it will retransmit the same
packet, potentially several times, until it has been informed about correct reception
(potentially up to a certain limit of retransmissions before giving up).

The way this signaling is done depends on the MAC protocol that is used, which
is designed with the characteristics of the physical channel in mind. Such channels
can differ strongly in the expected number of error events that can occur.

In Ethernet, for example, bit errors due to channel effects are exceedingly rare. Eth-
ernet frames are secured by a checksum, but no acknowledgments are used by the
Ethernet protocol. If an Ethernet frame was transmitted correctly, it is assumed
to have been correctly received, as well. The main source of errors in Ethernet
are collisions: the Ethernet frame cannot be correctly received any more because
more than one network participant sends at the same time, leading to interference
of signals.7 If such an interference is recognized (typically, by the sender of a frame

6Note that this counter-assumption is not 100% reliable, either: if the checksum has been
corrupted, but the packet has not, the packet will be still considered erroneous, even though the
actual packet data is error-free.

7At least in classic Ethernet, this is the case. However, for many years, the standard in Ethernet
deployments has been full-duplex, switched Ethernet: each participant has a dedicated connection
to a dedicated switching infrastructure, and vice versa. In such a deployment, no collisions are
possible.

2.4. On Acknowledgments 25

A B C

D

Figure 2.6 Hidden Station Problem: Both stations A and C want to send to B. Because they
are outside of each other’s reception range, they cannot hear each other, and may send at the
same time, leading to a collision in the gray area, and consequently at B.

listening to the shared channel while sending, and noticing different signals than the
ones sent by itself), a special jamming signal is sent that informs all network par-
ticipants of the collision. This leads to a special case of acknowledgments, negative
acknowledgments, in which the failure of a transmission is signaled instead of the
success.

This can only be done successfully in settings where complete and unrecognized loss
of a packet is impossible. Thus, such approaches are generally unsuitable for wireless
communications, in which the medium is both shared and witnesses strongly varying
channel effects not only over time, but also in space, such that the transmitter
cannot infer the receiver’s channel state from its own channel state information. An
example that visualizes this problem is the well-known hidden station problem, given
in Figure 2.6. The circles denote the range of each station, that is, the area in which
their signal can be received. Both A and C send to B at the same time, leading to a
collision of packets at B. Neither A nor C can recognize that such a collision occurs,
because they are outside of each other’s range.8 Hence, an Ethernet-like negative
acknowledgment is problematic: neither A nor C detect the collision, and therefore
cannot react; and while B could, this would also lead to problems, since its jamming
signal would also be received by station D. If that station were to be sending to an
unrelated station, the B’s jamming signal would cause it to retransmit its packet,
even if no collision occurred at its recipient’s location. Furthermore, in wireless
scenarios, collision is only one channel effect that can lead to errors. The other
channel effects explained in Section 2.2 (attenuation and noise) are also important.
Again, the sender cannot infer from its local channel effects those at the receiver.

This leads to the use of per-frame acknowledgments in Wireless LAN (IEEE 802.11),
the most commonly used standard for wireless communications outside of cellphone
systems. After every frame, the receiver sends a special acknowledgment frame back
to the sender if reception was successful.

Such a scheme is not without specific problems and drawbacks. First, acknowledg-
ments can be lost just as data frames can. If channel conditions vary, the reception
of the data frame can still have been successful, while the conditions worsened to the

8In Ethernet, by comparison, such a scenario is impossible because the signal attenuation over
the copper wire, even at the maximum lengths mandated by the Ethernet standard, is negligible,
and every network participant is guaranteed to hear each other.

26 2. Background and Related Work

point that the subsequent Acknowledgment (ACK) frame was not received correctly
by the data frame’s sender any more. In such a situation, an unnecessary retrans-
mission is triggered. It is often argued that ACK frames are small, and consequently
the risk of them being lost due to corruption is likewise rather small, since the risk of
corruption increases with frame length. This is true for some types of transmissions,
for example, file transfers, in which frames are as large as possible to reduce header
overhead, but not for all of them. A counter-example is VoIP or live streaming of
audio. Hence, this possibility should not be disregarded altogether. In addition,
the sending of the acknowledgment itself introduces signaling overhead: while the
acknowledgment is sent, the channel cannot be used to send data.

For our scenario of error-tolerant transmissions, acknowledgments pose an additional
problem. The concept of acknowledgments, signaling the correct reception of a
frame, is fundamentally at odds with error tolerance. This is exacerbated by the fact
that, in 802.11, acknowledgments are only sent when a frame was received completely
correctly, without any bit errors, and the absence of an acknowledgment causes the
sender to retransmit the frame. Such a behavior undoes most of the advantages
of error tolerance: if a frame is retransmitted until it is finally received without
any errors, the advantage of using the first, error-ridden, reception, is dubious.
Furthermore, the channel is unnecessarily occupied by retransmissions, which means
that one of the advantages of error tolerance, freeing up channel capacity due to the
reduction of retransmissions, is removed. We will discuss the consequences of this
conflict, and possible solutions, in more detail in Chapter 5, when we present a novel
rate adaptation algorithm for WLAN that does not rely on acknowledgments.

For the main parts of our work in Chapters 3 and 4, we will, however, simply assume
that no acknowledgments are used for our error-tolerant transmissions. We will
explain how 802.11 can be used without acknowledgments in the next section. Two
solutions to the question of how to manage concurrent error-tolerant transmissions
without and error-sensitive transmissions with acknowledgments will be discussed
in Sections 3.2.3 and 3.5.

2.5 Wireless LAN

Considerable parts of the work presented in this dissertation focus on the use of
IEEE 802.11 WLAN, often also called WiFi. This standard is by far the most
popular one for Internet-based wireless communication networks.

In the following, we will give a short introduction into WLAN with specific focus on
the salient points with respect to this dissertation. Note that many of the aspects
presented here assume a typical setup of infrastructure-mode, 2.4 GHz or 5 GHz
range, with 20 MHz bandwidth channels using Orthogonal Frequency-Division Mul-
tiplexing (OFDM). Rarely used options, such as ad-hoc mode, different bandwidths,
or different frequency ranges (or even substituting radio waves for infrared commu-
nication), often show differences in protocol behavior as well as in timing.

2.5. Wireless LAN 27

Frame
Control

2

Duration

2

Address 1

6

Address 2

6

Address 3

6

Sequence
Control

2

QoS
Control

2

Figure 2.7 Layout of a typical 802.11 MAC frame header. The numbers above each field
denote the size in octets. Depending on the type of frame (signaled in the Frame Control
field), field can be added or removed from the header.

Communication Behavior and MAC frame format

As the name suggests, many of WLAN’s design concepts stem from the idea to create
a wireless system that works as a natural extension of wired networks. An infrastruc-
ture 802.11 setup comprises an Access Point (AP) and one or more Stations (STAs),
with the AP playing the role of the centralized network infrastructure, like a hub
or switch in the case of star-topology Ethernet, while the STAs are network partic-
ipants such as laptops or mobile phones. 802.11’s status as an “extended, wireless
Ethernet” can be seen from the frame format (cf. Figure 2.7): as opposed to Ether-
net frames that contain a source and a destination address, 802.11 frames contain
typically three addresses (though in special cases only one or up to four). This mir-
rors the path frames take: even if two STAs within one network communicate with
each other, they do so via the AP; if a STA sends data to the Internet or receives
data from it via the (typically) wired connection that connects the AP with the
Internet service provider, it obviously has to do so, in any case.

802.11 frames hence contain the sender MAC address, the receiver MAC address,
and the MAC address of the AP, which doubles as the so-called Basic Service Set
Identification (BSSID), which identifies the physical wireless network.9 In the case
of communication to and from outside the wireless network, one of these addresses
is the MAC address of the “outbound” port on the AP. While the details on which
address is put into which address field change depending on the type of message,
the one constant is that the Address-1 field always contains the MAC address of the
intended next immediate receiver of the message, which facilitates such options as
power-saving by only listening and decoding received frames up to this point, and
stopping reception if the address doesn’t match the device’s address.

The other header fields provide additional ancillary information. The Frame Control
field contains various information about the frame, most prominently the type of
frame (e.g., data frame or acknowledgment), which is important because the rest of
the frame format depends on the type of frame. For example, an ACK only contains
a single address: the receiver of the ACK, that is, the sender of the original data.
The duration field informs all receivers of the frame of the length (in microseconds)
that the current frame exchange will take, so that, for example, in a data frame,
the duration also includes the time required to send the subsequent ACK. Since the
field is early in the header, before the Address-1 field, every network participant will
be informed about how long the channel will be occupied, and can go into a power-
save mode for that time, if desired. The Sequence Control field, finally, contains

9As opposed to logical 802.11 networks, which can comprise several APs; but this is outside of
the scope of this introduction

28 2. Background and Related Work

a sequence and fragment number. Thus, if fragmentation of frames received from
upper layers is necessary, the fragments can be identified and reassembled at the
receiver.

In WLAN, just as in the original Ethernet, all network participants share a common
medium. Furthermore, even different networks may have to share the same medium,
since the available spectrum is limited. To somewhat reduce this problem, several
frequencies within the available spectrum, so-called channels, can be used. In the
still popular 2.4 GHz range, only 3 non-overlapping channels exist, while in the
5 GHz range, this number is much higher (exact numbers vary based on regional
regulatory restrictions). Due to the shared nature of the medium, a scheme to deal
with collisions is necessary. However, as we have already seen in the previous section,
Ethernet’s collision detection is not feasible for WLAN. Instead, it uses a scheme
called Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), which,
while similar to Ethernet’s Carrier Sense Multiple Access with Collision Detection
(CSMA/CD), skips the detection step. In CSMA, the sender listens to the channel
to check whether another network participant is currently sending. If this is not
the case, it will send its data frame and expect an ACK. However, as in Ethernet,
collisions are still possible due to timing issues and signal propagation delays. If
both stations now immediately tried to retransmit their data, another collision would
occur, leading to an endless sequence of failed transmissions.

To solve this problem (just as in original Ethernet), a random backoff is introduced.
Both stations roll a random number from a certain range, termed the contention
window, typically between 1 and 15 in the first round, multiply this number with
the slot time of 9 µs, and wait that long before retrying the transmission, starting
with the carrier sensing step again. Thus, whichever station rolls the lower number
will be able to start, while the other station will notice that the channel is busy and
wait until the channel is available again. If both stations happen to roll the same
random number, or a third station interferes, another collision occurs, and another
round of random backoff is introduced, with an increased contention window, up to
a maximum of 1023 after several rounds, which reduces the risk of collisions while
increasing overhead due to long backoff times.

Note that this, by itself, does not solve the hidden station problem, as depicted in
Figure 2.6: A would still not be able to hear C and send its data, causing a colli-
sion at B. However, due to the missing ACK, A (and C) would notice a failure in
transmission of its data. Nevertheless, even if both stations rolled different random
numbers, a collision would still be highly likely to occur, because the frame trans-
mission is likely to take longer than the difference in backoffs. While this problem
tends to solve itself as the contention window increases, the price of several colli-
sions is very high. Thus, CSMA/CA introduces a so-called RTS/CTS mechanism,
in which a station that wants to send first sends a small Request To Send (RTS)
frame that includes the time it will need to reserve the common channel to trans-
mit its data. The receiver (if it is ready for reception and not currently receiving
other data) will then answer with a Clear To Send (CTS) frame, in which it repeats
this time information. The idea of the CTS frame is that it will be received by all
network participants that are in range of the receiver, denoted by the dashed circle
in Figure 2.6. Assuming channel reciprocity, that is, if B can receive data from A,

2.5. Wireless LAN 29

TIDs CWmin CWmax AIFSN

AC_BK (background) 1, 2 15 1023 7

AC_BE (best effort) 0, 3 15 1023 3

AC_VI (video) 4, 5 7 15 2

AC_VO (voice) 6, 7 3 7 2

legacy 802.11 (no AC) – 15 1023 2

Table 2.1 Parameters for different access categories (ACs) in 802.11e. Lower CWmin, CWmax,
and AIFSN increase chance of timely sending and hence QoS. The standard category for traffic
in 802.11e is AC_BE.

then A can receive data from B, the CTS will be received by network participants
that could cause a collision at B. Hence, once A sent an RTS and B answered with
a CTS, C knows that it cannot communicate with B for the time announced in the
CTS. The main downside of RTS/CTS is its increased overhead: instead of sending
two frames (data and acknowledgment), a data exchange requires the sending of
four frames. This is exacerbated by the fact that RTS and CTS, while small, are
sent with a more robust modulation and coding.10 Hence, RTS/CTS is typically not
used for all data frames, but, if at all, only based on certain properties, most often a
size threshold: if the frame is larger than the threshold it is secured with RTS/CTS,
otherwise not. Thus, the otherwise extreme overhead of RTS/CTS for small frames
can be avoided.

802.11e QoS Extensions

In original 802.11, all data was treated equally; there were no provisions for Quality
of Service (QoS) on the MAC layer. However, the 802.11e extension, part of the
802.11 standard since 2007, provides for different priority classes of frames.

When frames are received from the upper layers and prepared for sending, they
are inserted into a transmission queue, which either exists in software or directly in
hardware on the network adapter. Instead of a single queue, 802.11e introduces four
queues, for four different priorities, termed Access Categories (ACs). The main dif-
ference between these queues is the settings of CWmin and CWmax, the minimum and
maximum size of the contention window, and the AIFSN, which governs the length
of the Arbitration Interframe Space (AIFS), the time between sending subsequent
frames. Due to the complexity of the topic of different interframe spaces in 802.11,
and the fact that it is not important for the topics discussed in this dissertation, we
will refrain from an in-depth discussion of this aspect.

The default values, as mandated by the standard, for these parameters are given
in Table 2.1. Note that, while the default AC in QoS mode, AC_BE, has a higher

10The reason for this choice is that, especially for the CTS to work properly, it is important that
all network participants in B’s range are able to properly receive the CTS. By choosing the most
robust available modulation and coding, the CTS has the maximum probability of being received
correctly, and to reach even those network participants farthest away from B.

30 2. Background and Related Work

AIFSN than legacy traffic, and thus it seems as if it might be disadvantaged, subtle
changes in the behavior of how to increment and decrement the contention window
size in 802.11e lead to a similar performance [BTS05]. The Traffic Identifiers (TIDs)
allow, in theory, a more fine-grained classification, modeling the 8 priority levels
in Ethernet [IEEE14]. In practice, however, there is no difference between the two
TIDs in each AC. Note that TID 0, the default, is assigned to AC_BE for backwards
compatibility.

One effect of these different queues is that there are two layers of contention when
trying to send a frame: in addition to the channel contention that all network
participants go through if they want to send data simultaneously, there is also a
local contention between different queues. Simply sending data from the highest-
priority queue that has data available could lead to starvation for the lower-priority
queues. Therefore, whenever a network participant wants to send data, it rolls
random numbers for each queue it has data in, between 1 and that queue’s current
contention window size. The queue with the lowest roll wins and proceeds to contend
for channel access. The lower lower values for CWmin and CWmax hence help both
in the local as well as in the contention period to provide, on average, higher priority
access to the channel.

The 802.11e QoS extensions introduce a second concept that is less known, but of
vital importance for this dissertation. Whereas in standard 802.11, every frame is
acknowledged, 802.11e allows switching off ACKs on a per-frame basis. This is done
by setting a flag in the QoS control block of the MAC header, that signals to the
receiver that it should not send an ACK. Since the sender has no feedback from
which to infer whether transmission was successful, it only sends the frame once.
This is especially helpful if retransmissions are assumed to be of little benefit, for
example, due to the delays introduced for time-critical data. As we hinted at in the
previous section, ACKs are problematic in combination with error tolerance. The
ability to switch them off for certain transmissions is therefore helpful. In addition,
not using ACKs has a beneficial side-effect. Under normal (ACKed) conditions,
the sender reserves the channel both for the duration it takes its data frame to be
transmitted, as well as the time it takes the sender to calculate the checksum and
send the ACK. In No-ACK transmissions, this extra time is saved, and the channel
yielded earlier, increasing the potential throughput.

Figure 2.8 shows results from our measurements [SAAW11] that underline the po-
tential of No-ACK transmissions. For this experiment, we placed a STA close to an
AP to produce good channel conditions and minimize frame loss, so that the limit-
ing factor is the speed at which frames can be sent over the channel. The potential
improvements are significant. Note that both small and large frames benefit. The
largest absolute increase is realized with large frames, but small frames show the
largest relative increase. This is because continuously sending small frames means
more frames are sent, which means more time is spent sending ACKs in the standard
case, which No-ACK can use to send more frames.

The fact that switching off ACKs is done on a per-frame basis is both beneficial
and problematic. Beneficial, because a setting in which all traffic would be either
always sent with or always without ACKs is infeasible: all error-sensitive traffic

2.5. Wireless LAN 31

 0
 5

 10
 15
 20
 25
 30 1470 bytes payload

 0

 5

 10

 15

 20

 25

 30
500 bytes payload

T
h

ro
u

g
h

p
u

t
[M

B
it
/s

]

 0
 5

 10
 15
 20
 25
 30

1 2 5.5 6 9 11 12 18 24 36 48 54

50 bytes payload

Bitrate [MBit/s]

with ACK
No-ACK

Figure 2.8 Application-level throughput of an 802.11e transmission under good channel con-
ditions, with and without ACKs. Under these conditions, No-ACK increases throughput signif-
icantly. Larger frames produce higher absolute improvements, while smaller frame sizes benefit
the most relative to with ACKs.

would suffer. On the other hand, the setting is per-frame, and hence has no concept
of flows. By default, there is no provisioning in the standard of how to signal to the
MAC layer which frames should be sent without ACKs. This is similar to the field of
rate adaptation, which we will discuss later in this section: while it is to be assumed
that there is some logic in place to switch between rates, the 802.11 standard does
not mandate or suggest any ways to do so. Over the course of this dissertation, we
will present two approaches of signaling to the MAC layer to make error-tolerant
traffic ACK-less, while keeping ACKs for error-sensitive traffic: the first solution was
implemented and will be described in Section 3.2.3, while a potential improvement
will be discussed in Section 3.5.

Rate Adaptation

While wired communications can guarantee a steady communication quality at any
point in time, the aforementioned channel effects lead to strongly varying signal
quality in wireless systems. One approach to cope with these variations is to use
different strengths of modulation and coding, and adapt their use to the current
channel quality. This approach is called rate adaptation and allows the use of high-
speed communication under good channel conditions, while reducing the rate to
increase robustness under bad conditions. In 802.11, several rates, that is, preset
combinations of modulation and coding that produce a nominal throughput rate,
are defined. Depending on the version of the standard, the number of choices can
be as low as two (in the original 802.11 standard) and as high as 32 (in 802.11n).

32 2. Background and Related Work

While these rates are defined in the standard, there are no defined ways to switch be-
tween rates. Much like congestion control in TCP, this has lead to many algorithms
being proposed and used over the years.

One of the fundamental problems of rate adaptation in 802.11 is the scarcity of
information, both spatial and temporal. Regarding spatial effects, the choice which
rate to use in the next frame has to be done by the sender; however, the information
about reception quality is only available at the receiver. Hence, some feedback
mechanism is required to transfer this information. Many approaches use ACKs
as implicit feedback mechanisms: if an ACK is received, the frame was received
correctly, which means that at that point in time, the chosen rate was robust enough.
However, this does not provide any information whether a higher-speed rate would
also have been successful. To feed back more detailed information from the receiver
to the sender, more sophisticated mechanisms are required that either send explicit
feedback, or rely on the concept of channel reciprocity: if A receives frames from
B at a certain channel quality, it is assumed that frames sent from A to B will be
subject to the same channel conditions.

With respect to temporal effects, the problem is that a 100% reliable prediction of
channel behavior in the future is impossible. Real-world channels show a chaotic
behavior that can only be predicted to a certain degree from previous readings.
The general approach is to assume that channel quality will not change significantly
within a time frame termed the coherence time, so that channel quality for a frame
that is to be sent can be inferred from the channel quality that recently received
frames witnessed. The more chaotic the channel, the smaller the coherence time,
and the more challenging predictions become. We will discuss the challenges and
the different types of approaches to rate adaption in detail in Chapter 5, when we
present a novel rate adaptation mechanism that forms part of the contributions of
this dissertation.

The PLCP

One result of rate adaptation is that, depending on the data rate, frames are encoded
with different strengths of convolutional coding, and then modulated in different
ways. Especially the latter point leads to the problem that the receiver of a frame
needs to demodulate the received waveforms into symbols, without knowing which
demodulation technique to apply. However, using the wrong demodulation scheme
produces a completely different output, corrupting the frame completely.

To solve this problem, each 802.11 frame contains additional information in front of
the MAC header, the Physical Layer Convergence Protocol (PLCP) preamble and
the PLCP header. The preamble contains a well-defined pattern that is the same
for every frame, regardless of modulation, and allows the OFDM decoding unit to
both recognize that a frame is about to be received, and to adapt its reception unit
to the reception, by, for example, setting the correct gain and account for potential
frequency offsets.

The PLCP header contains information about which modulation and coding the rest
of the frame (starting with the MAC) header will use, and about the length of the

2.6. Related Work 33

frame (in bytes). This information is always sent at the base rate: in OFDM at
6 Mbit/s, with Binary Phase-Shift Keying (BPSK) at rate 1/2, so that it is always
clear how to demodulate and decode the PLCP header.

Within this dissertation, the PLCP header is not examined in detail and generally
abstracted from. This is for two reasons, a fundamental and a practical one.

Fundamentally, an error in the PLCP header generally leads to a catastrophic failure
during reception. If the length field is broken, the frame will either be truncated,
or the receiver will listen to the channel after the frame transmission has finished,
potentially much longer, leading to unexpected lockups or communication problems
(since the receiver will be locked into reception mode). If the field denoting the
modulation and coding is broken, the remainder of the frame will be completely
corrupted.

Practically, the possibility to receive frames with errors in the PLCP header is
much less prevalent in consumer hardware than to receive those with correct PLCP
checksums, but broken MAC checksums. Consequently, when we investigated error
tolerance in an 802.11 setup in Section 3.2.4, we let the hardware drop all frames
with errors in the PLCP header11 and considered them lost.

2.6 Related Work

Before starting with presenting our contributions in the next chapter, we will discuss
work that is related to the topics of this dissertation. Note that this section deals
with related work with respect to error-tolerance approaches or other approaches
that try to assuage problems with erroneous links. Related work for rate adaptation
is discussed separately in Section 5.3.

2.6.1 Error Tolerance

Error tolerance is one of the core concepts and motivators for the works presented
in this dissertation. To give an overview over the current state of research in this
field, we will first discuss protocols that introduce payload error tolerance, before
discussing related work in the field of heuristic header error recovery.

Error-Tolerant Protocols

UDP-Lite, proposed in 1999 [LDP99] and later standardized as an RFC [LDP+04],
is the initial point from which much of the following research was motivated. It
changes the behavior of the UDP checksum. In standard UDP, the checksum is
calculated over the pseudo header (cf. Figure 2.9), an extension of the UDP header

11Practically speaking, we did not have a choice on some cards; On others, we preliminarily
investigated the feasibility of recovering from PLCP errors, but the aforementioned prevalence for
catastrophic failures convinced us to not further consider this approach.

34 2. Background and Related Work

0 8 16 24 31

Source IPv4 Address

Destination IPv4 Address

0x00 Protocol UDP Length

Source Port Destination Port

Length Checksum

Figure 2.9 The UDP pseudo header (when used with IPv4) is a combination of a subset of
the header fields of the IP header (light gray) and the UDP header (white) and is used for
calculation of the checksum. The checksum is calculated over the fields of the UDP pseudo
header (with the checksum field set to 0 during calculation) and the UDP payload.

with a subset of fields from the IP header, and the payload. UDP-Lite changes
this behavior by redefining UDP’s length field. Instead of containing the length
of the UDP payload (which is redundant, because it can be calculated from the
Total Length field of the IP header by subtracting length of the IP header itself), it
contains the checksum coverage, which denotes over how many bytes the checksum
was calculated. In addition to the header, the checksum can cover a variable portion
of the payload, from none to all. This allows the application to, for example, put
sensitive information in the beginning of the datagram and have it be secured by a
checksum, while the remaining part of the payload is not secured. Hence, errors in
this part will not lead to drops.

Even though protocols that did not secure the checksum were no new concept –
IPv4, for example, does not secure the payload at all and only secures its own head-
ers with its checksum – UDP-Lite was, to our knowledge, the first time a protocol
was specifically changed to introduce error tolerance, and be standardized in this
way. However, one major problem is the lack of backwards compatibility with stan-
dard UDP. Since the meaning of a header field is incompatibly changed, UDP-Lite is
effectively a new protocol, despite its clear pedigree. To use UDP-Lite, both sender
and receiver therefore need to support UDP-Lite by having a protocol implementa-
tion for this new protocol available in their network stack.

This downside is solved by UDP-Liter [LL04], which takes the idea of error tolerance
from UDP-Lite, but implements it in a way that stays backwards compatible. In-
stead of using a checksum coverage field, UDP-Liter uses standard UDP checksums,
but it does not discard packets when the checksum fails. Instead, it still forwards
the packet to the application, but notifies it if the checksum failed. UDP-Liter took
two very important steps towards heuristic header recovery: First, it introduced the
concept of ignoring checksum mismatches and living with the consequences. It is not
yet an error recovery concept, because there are no provisions to recover from or re-
pair errors; there is simply the idea to ignore checksum hints that an error occurred.
Hence, even though the paper acknowledges the problem, there are no provisions to
prevent misattributions. The authors’ rationale is that the problem is considered
“small enough [...] to ignore”. Second, UDP-Liter introduced the notion of notifying
the application layer of checksum mismatches, a concept that we also introduced

2.6. Related Work 35

in Refector. While the concepts are the same, UDP-Liter’s solution is somewhat
more cumbersome to implement and use, because it introduces additional system
call functions to replace the standard socket creation and reception functions, while
we solve this problem by an additional socket option and message flag, and keep
using standard functions.

Heuristic Error Recovery

The field of heuristically recovering from errors is a relatively novel one, with a rather
slim body of related work. Furthermore, there has been little coordinated effort in
the area, with related work scattered among the fields of protocol design, wireless
communications, and coding theory. While the prevalence of the word “Lite” in
many of these these works’ titles suggest that they have been inspired by the con-
cept of UDP-Lite, none of them seem to have been aware of other, similar efforts.
This leads to the effect that the basic concept of classifying header fields into cate-
gories such as “vital” and “don’t-care” has apparently been discovered independently
multiple times.

To the best of our knowledge, this dissertation is the first time that the concept
of heuristic header error recovery has been tackled from both a comprehensive and
practical point of view, and also the first time that this body of related work has
been compiled into one discussion.

Alfredsson and Brunstrom propose TCP-L [AB03] and give some insights into the
basic idea of their heuristic recovery. Similarly to Refector (protocol-specific header
error recovery) in this dissertation, they recognize the advantage of categorizing fields
by importance, and that heuristic recovery is possible if header fields of incoming
messages are matched against expected values for ongoing connections. However,
their approach is hampered by the focus on TCP. While they can show that their
approach increases throughput in a simulated wireless scenario, they do not dis-
cuss the open questions that stem from the interaction between their approach and
TCP’s complex control loops, for example, the setting of correct receive and conges-
tion windows. The question of if, how and when to send TCP ACKs in response to
corrupted packets is also not discussed. Finally, the fundamental problem of misat-
tribution due to erroneous heuristic repair choices is mentioned, but its probability
of happening within their scheme is not discussed or evaluated by the authors.

Jiang presents a scheme [Jia06] that aims at introducing heuristic header error re-
covery into the 802.11 MAC protocol. In many ways, the contributions of this work
mirror those of TCP-L. While there is no explicit classification of header fields into
categories, Jiang also implicitly distinguishes between important and unimportant
fields. However, the approach again suffers from idiosyncrasies of the chosen proto-
col. Since the 802.11 MAC protocol requires extremely timely acknowledgment of
received packets, the question of whether or not to acknowledge a corrupted packet
becomes much more pressing, due to the fact that the decision has to be done before
any complicated recovery technique can feasibly identify whether a packet can be
salvaged or not. In Refector, we avoid this problem by using the special No-ACK

36 2. Background and Related Work

capabilities of the 802.11e extension. Jiang, however, does not discuss this prob-
lem except for a suggestion to fundamentally (and incompatibly) change the ACK
procedure in 802.11 networks. Finally, just like Alfredsson and Brunstrom, he rec-
ognizes the possibility of misattribution, but only gives a rough estimation of such
probabilities depending on the bit error rate, and does not provide any evaluation
results.

Khayam and Radha [KR07] propose a scheme for video transmissions that shares
many similarities with Refector. For example, they propose header error recovery
that spans more than one protocol. They also recognize that there are, in their
words, “critical header fields”, which are vital to the identification of a connection
a packet belongs to. However, for identification of header errors, they rely on hav-
ing an accurate bit error distribution model for the received data, which is hard
to acquire, and, worse, cannot be generalized, since such distributions strongly de-
pend on the used hardware [HJL+09,HJL+12]. Furthermore, this complicates their
estimation calculations; conversely, we can show that a simple but computation-
ally efficient Hamming distance calculation is sufficient. More so than other related
work, Khayam and Radha seem aware of the problem of misattribution and try to
alleviate it. However, their solution to the problem is specifically tailored to their
use case of video streaming: to reduce their relatively high misattribution rate of,
depending on scenario, more than 1%, they propose to provide additional FEC to
the application-layer H.264 video header, which contains a sequence number, and
to drop the packet on the application layer if an unexpected sequence number is
received. Additionally, it is not clear how they prevent misattribution towards other
concurrent connections that are not error-tolerant. This is exacerbated by the fact
that they decide to always send ACKs, even when packets are corrupted: concurrent
error-sensitive traffic will hence witness large packet loss rates.

In Mac-Lite [MLKD10], the authors approach the problem of header error recovery
from coding theory. They also recognize that header fields are of different impor-
tance and predictability. Furthermore, they notice that header fields in protocols
of different layers can rely on each other and hence carry additional redundancy.
They give the example of the 802.11 PHYsical layer (PHY) and MAC length fields.
While their approach is well-founded in theory, the practical applicability is ques-
tionable. One problem is that they use a decoder with exponential complexity with
respect to the size of the received frame. This is exacerbated by the fact that they
use soft-decision decoding, in which each bit is not hard-decoded to a 0 or 1, but
instead bit probabilities (likelihood that a bit has a certain value) are used, which
further increases the real-world computational overhead. Consequently, they only
show simulation results and do not discuss the practical feasibility of their approach.
Furthermore, the use of soft information precludes the use of consumer hardware.
Finally, they do not discuss or even acknowledge the problem of misattributions at
all. Nevertheless, if these problems could be overcome, their solution might be a
natural extension to the concepts for heuristic recovery presented in this disserta-
tion: since, while our concepts are applicable generally, our current implementations
only consider heuristic recovery for protocols from the network layer upwards, and
their approach focuses on the MAC and PHY layer, a combination might produce
further improvements.

2.6. Related Work 37

2.6.2 Reducing Retransmissions

Much work has focused on improving the efficiency of retransmission schemes. The
standard behavior of retransmitting a complete packet is extremely inefficient if only
small parts of the data have been corrupted. This motivates work that combines
information from a retransmission with the original transmission to make it very
likely that no additional retransmissions are needed. Other work, instead of focusing
on reducing the number of retransmissions, tries to reduce their size by identifying
the erroneous parts and only retransmit those.

The approaches can be roughly categorized depending on the amount of information
that is used and hence required to be available. In the following, we will use two
categories: approaches that do not require additional data other than what is avail-
able on the MAC layer; and approaches that require additional information from
the PHY layer. The motivation for this categorization is that, while solutions in
the second category have the potential for stronger improvements, their need for
PHY information precludes their use on commodity hardware, and restricts them
to experimental software radios, such as the popular GNURadio USRP [USRP].

With the exception of ZigZag, all of these approaches require support from both
sides of the communication (transmitter and receiver).

No Additional Information

Maranello [HSG+10] partitions the 802.11 MAC frame into blocks, with each block
secured by its own checksum. If the overall checksum fails, the receiver checks
the sub-checksums and replies with a specially-crafted Negative Acknowledgment
(NACK) frame, which contains information about which blocks were corrupted,
instead of the normal ACK. In response, the sender only retransmits the corrupted
blocks. One of Maranello’s downsides is that its negative ACKs are much larger
than standard ACKs, because they have to carry information about which blocks
were corrupted. Since the sender reserves the time for their data frame’s ACK,
collisions can occur if the negative ACK uses the channel for longer than reserved.
Bologna [HGC10], an extension to Maranello, solves this by both reducing the size
of the NACK considerably, and increasing the channel reservation to always cover
the NACK, which is still slightly larger than a standard ACK.

Instead of sending partial checksums and partial retransmissions, ZipTx [LKK08]
uses a Reed–Solomon code to add additional redundancy to an 802.11 MAC frame,
but does not send the redundancy with the initial transmission. If a packet is not re-
ceived correctly, ZipTx sends the redundancy incrementally in two additional frames
that replace the classic retransmissions. This scheme benefits from the fact that,
by sending redundancy data instead of retransmitting original data, even partially
correct receptions of the RS code blocks can be enough to restore the data. Like
our recovery schemes, ZipTx needs a specially crafted rate adaptation algorithm to
show its full potential.

TVA [MM13] is an approach that, while general in its theoretical foundation, is
crafted for use in 802.15.4 [IEEE11] (ZigBee, sensor net) networks. It recovers the

38 2. Background and Related Work

original content of corrupted messages without any additional redundancy infor-
mation, only using the information contained in the CRC to infer original frame
contents. Since the CRC was not designed for recovery, there are typically multiple
repair options. Hence, TVA has to cope with a problem very similar to misattribu-
tion, in which they misrepair the packet to a content that matches the CRC, but is
not the correct. TVA solves this by calculating another checksum with a different
generator polynomial over the packet, sending this CRC to the sender for cross-check,
and only accepts frames if the sender confirms the match of this checksum. The main
challenge of TVA is that repair via CRC either is computationally expensive or re-
quires large lookup tables. Thus, it requires domain knowledge about typical error
patterns specific to the hardware, which explains the focus on sensor network: it has
been shown (both by us [SCW13,SCHW14] and by others [MPC+10,HWM+14]) that
802.15.4 hardware is prone to very specific error patterns which TVA can leverage.

MRD [MBK05] also tries to reconstruct corrupted packets by checking against the
CRC. However, it uses additional information by exploiting spatial diversity: its
use case is a dense deployment where every packet sent by a STA is received by
at least two APs, which furthermore are interconnected via Ethernet. A central
controller then takes both receptions, splits them into blocks, compares the blocks,
and exhaustively tries all combinations of erroneous blocks from both frames to find
a combination that matches the received CRC. The division into a small number of
n blocks allows reducing the number of combinations that are needed to check and
thus the otherwise prohibitive overhead of O(2n).

Badam et al. [BKH+11] also focus on a system with both wired and wireless connec-
tions. However, their use case is a fast, but unreliable wireless network, combined
with a reliable, but slow (or otherwise restricted, e.g., for pricing reasons) wired net-
work, where all network participants are connected via both methods. They offload
all control traffic onto the wired connection and add a partial checksumming scheme
very similar to Maranello. Thus, they significantly increase the throughput in their
wireless network.

Physical Layer Information Available

This group can be further split into two subgroups, depending on the amount of
information that is required from the PHY layer. Solutions from the first group
require only soft information, while the second group works directly on the physical
layer symbols. The first group is arguably more likely to see support in consumer
hardware, since it only requires an enriched interface from the PHY to the MAC:
instead or in addition to the hard-decoded bits, the per-bit soft information is handed
over. The second group requires direct implementation in the PHY, because those
solutions directly modify the symbol decoding.

SOFT [WKSK07] and PPR [JB07] belong to the first group. PPR uses soft informa-
tion to estimate which bits are likely corrupted, and to selectively request those for
retransmission. To keep the size of this feedback small, it dynamically partitions the
received packet into variable-size blocks to minimize the messaging overhead, since
signaling feedback to the receiver increases with the number of single bits that need

2.6. Related Work 39

to be retransmitted, while requesting large blocks reduces the feedback overhead, but
leads to retransmission overhead from the sender. SOFT is conceptually very similar
to MRD as described above. However, SOFT makes use of the richer information
available to repair corrupted bits, and therefore outperforms MRD significantly.

The rest of the works presented here belong to the second group.

Aman et al. [ASC14] propose an improvement of PPR. Instead of using per-bit
soft information, they use per-symbol Error Vector Magnitudes (EVMs), a quality
metric that effective describes the Euclidean distance between the received symbol’s
position in the constellation diagram and that of the closest reference point. By
using this richer information, they can better recognize which parts of a packet are
corrupted.

ZigZag [GK08] recovers packets that have been the victim of collision on both their
initial transmission and their first retransmission. Instead of a second retransmis-
sion, ZigZag analyzes the two receptions, is able to recognize the start of the col-
lisions within the receptions, and, unless they happen to be at exactly the same
point in both packets, can then iteratively decode each next PHY symbol by using
information from one reception to decode the other, and vice versa (hence the name
“ZigZag”).

MISC [OZL14] also reconstructs data from two transmissions, even under strong
noise. To do so, it uses a different constellation map, that is, assignment of bit
values to physical layer symbols, on its retransmission. Visually, taking Figure 2.4a
on page 21 as a reference, this would mean to, for example, exchange the values 01

and 00 so that, on a retransmission, 01 and 11 have a larger distance to each other,
and it is easier to distinguish between the two. After reception of the retransmission,
decoding is done by calculating the sum of both Euclidean distances for each symbol
value’s two reference points and decoding to the bits of the best fit.

A very different way to solve the problem of retransmissions is presented in SoftCast
[JK09]. In its goal it is similar to the work of this dissertation, in so far as it proposes
a way to efficiently send media streams via error-prone wireless links. However, its
solution is completely different: instead of keeping the restrictions of packet-based
transport and working with them, SoftRate modulates the video data directly onto
the OFDM signal of 802.11. This leads to a higher video quality over a large range
of Signal-to-Noise Ratios (SNRs) compared to using the standard rates, and since
no addressing is used any more, broadcast is inherently supported. By using the
H.264 [SMW07] scalable video coding extension, such broadcast is even possible to
stations with different reception qualities, by graceful degradation of the reception
quality. However, such a massive change, circumventing all protocol layers, requires
support to a degree that the practical applicability of such a scheme in an 802.11
network is questionable. Consequently, the authors do not discuss questions such as
the coexistence of SoftCast traffic with other 802.11 traffic.

40 2. Background and Related Work

2.6.3 Header Compression

Header compression’s relation to the works presented in this dissertation is less di-
rect. It can be considered an alternate approach, with the two coming from different
ends. The goal of Header compression is to reduce packet size, which increases ef-
ficiency; the fact that reduced packet size also reduces packet loss rates because
smaller packets contain fewer bits that can be corrupted is a welcome side-effect.
Heuristic header error recovery, on the other hand, tries to solve the problem of
packet loss by recovering from errors, which leads to more timely reception and less
wasteful communication; an increased efficiency is a welcome side-effect. Both have
at their core the realization that packet headers contain redundancies that can be
leveraged: in one case, they are removed to reduce header size, in the other, they
are used to recover from bit errors in the headers.

One concept that is shared by all header compression schemes that reduce size by
eliminating redundancy is that the eliminated information has to be transmitted at
least once at the beginning, so that the receiver knows the contents of a so-called
reference header, from which it can take the static information during decompression.

The idea of reducing header size by only transmitting information that has changed
since the last packet can be traced back to Thinwire [FDC84], which proposed sev-
eral different compression schemes for TCP/IP and UDP/IP. The simplest form,
Thinwire I, can reduce the per-packet header overhead of TCP/IP from 40 to 17
bytes. It is notable that this method is almost independent of the used protocols,
because all it needs is the size of the header that is to be compressed, and then sends
updates of only those bytes (marked with length/offset descriptors) that changed.
Thinwire II exploits more specific information about which header fields stay static
and which change over the lifetime of a connection and can thus decrease the over-
head further to a typical size of about 13 bytes (depending on which TCP fields and
flags were changed).

Van Jacobson Header Compression [Jac90] is specific to TCP/IP connections, but
leverages additional effects that lead to further compression: compressed headers are
between 3 and 16 bytes, with a typical size of about 5 bytes. At the core of this, and
many later approaches, is the idea that, just because a header field changes its value,
it does not necessarily have to be transmitted completely. It is sufficient to transmit
the difference between the new and the old value, which generally is a much smaller
number and takes less space to transmit. Several years later, Casner and Jacobson
proposed a compression scheme [CJ99] for streaming data using UDP/IP with RTP.
Under favorable conditions, it can reduce the 40 bytes of header to 4 bytes. They
extended the previous idea by denoting fields that increment in a regular fashion by
a simple bit switch. A field that always increases by 1 or another static amount can
hence be compressed even further. However, the stronger the compression, the larger
the risk that due to undetected packet losses, fields are incorrectly decompressed at
the receiver side. IP Header Compression [DNP99] proposes another scheme that
supports IPv4, IPv6, TCP, and UDP. While it generally does not reach the same
compression performance as the previous algorithms, this is a conscious tradeoff to
provide better performance in scenarios with unreliable links, such as wireless net-

2.6. Related Work 41

works, where packet loss is common. The overhead due to less efficient compression
is justified by larger robustness to packet loss events.

Robust Header Compression (ROHC) [BBD+01] is a framework of concepts that can
then be applied to protocols by protocol-specific profiles. Standardized profiles exist
for UDP/IP with and without RTP as well as ESP/IP (all [BBD+01]), general IP
without transport-layer protocol encryption [JP04], IP/UDP-Lite with and without
RTP [Pel05], and TCP/IP [PSJW13]. ROHC tries to combine the advantages of
high compression and robustness to potentially desynchronizing errors by defining
three states. In the Initialization-and-Refresh (IR) state, uncompressed packets are
transmitted, which is necessary during initial connection setup and if synchroniza-
tion between sender and receiver was lost due to packet losses. In the First Order
State, compression is increased, but not yet optimal. In this state, unexpected irreg-
ular header contents can be dealt with by transmitting them without compression.
The Second Order State uses all compression available. In addition to the compres-
sion approaches described above for previous solutions, ROHC uses sophisticated
compression schemes in this mode that, for example, dynamically adapt the number
of bits necessary for each differential value that has to be transmitted. However, this
sophistication in combining robustness with high compression comes at the price of
a very complicated setup and implementation compared to other approaches.

6LoWPAN defines a header compression scheme [HT11] that grew out the task to
make IPv6 with its large headers suitable for low-power wireless networked devices,
following the Internet Of Things concept. In addition to some of the standard
approaches mentioned above, 6LoWPAN’s header compression makes specific use
of the typical environments and network topologies in which such devices are used.
For example, it compresses all IPv6 addresses, even on the first use, by using an
administrator-defined address prefix and only a small local part, due to the fact
that those devices are generally expected to communicate only locally with each
other and a gateway.

All these header compression schemes presented so far share the problem that they
are protocol-specific. One header compression solution that solves this problem
is the Generic Header Compression (GHC) [Bor14] scheme defined for 6LoWPAN.
While it is less efficient than a specifically tailored header compression, it offsets
this downside with its generality: all headers, in theory, and even payload can be
compressed. The idea is to simply use a generic lossless data compression algorithm,
the LZ77 algorithm [ZL77] to compress all headers above the 6LoWPAN IPv6 header.
Since LZ77 is dictionary based and, under normal circumstances, would need to send
its compression dictionary with the compressed data, it would struggle to effectively
compress the often very small header. To improve the compression rate, GHC uses
a precomputed dictionary that is already available and does not need to be sent
with the header, and that is specifically set up to aid compression of header values
considered to be likely.

42 2. Background and Related Work

By this art you may contemplate the variation of the twenty-
three letters, which may be so infinitely varied, that the
words complicated and deduced thence will not be contained
within the compass of the firmament.

—Robert Burton, The Anatomy of Melancholy3
Refector: Protocol-Specific Heuristic
Header Error Recovery

In this chapter, we will present one of our two approaches to heuristic header error
recovery. As a first step, we will discuss the feasibility of such recovery.

We will then present in Section 3.2 the fundamental concept of heuristic header
error recovery, with a focus on IPv4 and UDP, which we termed Refector (Latin for
mender, repairer). In this part, we will discuss how to find a matching connection for
a packet with header errors, and present the classification of header fields depending
on their necessity for recovery. Finally, we will evaluate Refector’s efficacy in a
real-world 802.11 (WLAN) testbed.

In Section 3.3, we will investigate a combination of Refector with Iterative Source–
Channel Decoding, a highly efficient approach for data encoding, and thus answer
two questions: (1) How much speech quality improvement can Refector give us?
(2) How does so-called soft information improve the recovery performance of Refec-
tor?

Finally, in Section 3.4, we will present an extension to Refector. This extension was
motivated by the fact that RTP, the Real-Time Transport Protocol, is a standard
protocol often used to support media streaming. Our original version of Refector
only supported static header fields that are the same in every packet that belongs
to a stream, such as port numbers. On the other hand, RTP contains dynamic
fields such as sequence numbers, which change from packet to packet. Using RTP
as an example, we will present the necessary extensions to recover from errors in
such fields. Again, we will first discuss the conceptual solution before presenting
evaluation results, this time from a simulated environment.

44 3. Refector: Protocol-Specific Heuristic Header Error Recovery

3.1 Introduction

The original motivation for Refector was one of efficiency. The classic layered pro-
tocol approach of the theoretical ISO/OSI and the more practical TCP/IP network
stack requires, implicitly or explicitly, total correctness of content. Enforced by
checksums, even single bit errors lead to checksum mismatches and, consequently,
to packet drops. This is highly inefficient, especially in networks which regularly
produce bit errors – which includes virtually all wireless networks.

One idea to improve the performance is to devise approaches to reduce the overall
bit error rate, without unduly reducing the overall throughput performance; another
is to make recovering from errors more efficient than by retransmitting complete
packets. We, however, decided to investigate towards a different goal: accepting
that unrecoverable errors will always occur, and finding ways to cope with those
errors.

This solution is obviously not suitable for every kind of data transmission: the
enforcement of bit-by-bit correctness is vital for any type of data transmission that
relies on correctness. A typical example is the transfer of files, especially executable
binaries, in which bit errors are unacceptable, because they will change the behavior
of the contained code, in unpredictable and possibly catastrophic ways.

However, there exists a group of applications which, by their very nature, are error-
tolerant. A prime example from this group is media streaming, in which input data
is already subjected to a non-recoverable (lossy) reduction in size by applying models
that separate unimportant information from important information with respect to
human sensual perception. Especially for transmissions over media that are expected
to produce errors, these media codecs are already designed with a certain amount of
error concealment in mind. While some of them have been specifically adapted to
the case of packet loss [WSBL03, VVT12], there also exist codecs, especially those
originally designed for mobile telephone networks, that have strong concealment
techniques for bit errors inside a received data stream [ETSI00,SSJ+08].

For these applications, the current state is doubly problematic. Not only do re-
transmissions of such packets produce overhead that could be prevented by handing
the applications the (potentially corrupted) data. Retransmissions also introduce
delay into the transmission of data. However, media streaming data is highly time-
conscious: data needs to be available at the receiver at the time it is played out.
Partially corrupted data that still arrives in time is helpful [HRNK04] and can be
used for playback after potentially applying error concealment, while correct data
that arrives only after one or possibly several retransmissions might be too late
to be of any use at all any more. This sensitivity to delay can be somewhat re-
duced by introducing buffering on the receiver’s side: the delay arising from those
buffers give the application more time to receive potential retransmissions. How-
ever, those so-called jitter buffers12 are very limited in their applicability in two-way

12These buffers are named for the effect they aim to mitigate, the so-called jitter, which denotes
variance in the reception delay perceived by the receiver. Retransmissions are one cause for this
variance in delay.

3.1. Introduction 45

communication scenarios, such as video conferencing or VoIP. For example, for
VoIP, more than 150 ms of end-to-end delay are considered detrimental to perceived
quality [ETSI06, ITU03].

UDP-Lite as a “Spiritual” Predecessor

This suggests that support for error tolerance in transmissions is beneficial and
can improve both performance of some types of applications and the overall perfor-
mance of the network by reducing retransmissions. However, such a scheme needs
support by adapting network protocols to allow such error tolerance. One of the
most well-known examples of such an adaptation is UDP-Lite [LDP99, LDP+04].
By redesigning the UDP protocol to allow dynamic coverage of only a part or none
of the payload by its checksum, error tolerance is facilitated for payloads on the
transport layer, only keeping its header secured. This does take an important step
towards supporting error tolerance; however, it suffers from two main problems:

1. By redefining the header contents of UDP, UDP-Lite is incompatible to UDP.
It hence requires support by both the sender and the receiver, and by both
the application (that chooses to use this new transport-layer protocol) and
the operating system (that supplies an implementation of UDP-Lite) on either
side.

2. UDP-Lite is a stand-alone solution that depends on support by lower-layer
protocols. While IP does not pose a problem to payload error tolerance because
its checksum only covers its own header, MAC-layer protocols typically secure
the complete packet, and hence drop any packets with errors anywhere in it.

Furthermore, while UDP-Lite is a well-known example that recognizes the benefit
of error tolerance for certain applications, we argue that it only “goes half the way”:
errors in headers still lead to packet drops. Especially in audio streaming appli-
cations, individual packets tend to carry only small payloads: media compression
algorithms reduce the amount of payload to be carried significantly, and to keep the
aforementioned timings, packets have to be sent out regularly, for example, every
20 ms. In such situations, headers form a sizable part of each packet, more than 50%
in extreme cases. Introducing header error tolerance therefore promises to further
improve on solutions such as UDP-Lite.

Nevertheless, there are good reasons why this approach has been shied away from and
not taken yet or investigated by anybody in a comprehensive and detailed manner.
This approach comes with considerable risks. The main problem is that media
codecs that are expected to cope with erroneous information were designed to do so.
Protocol headers, on the other hand, were not designed with such error tolerance
in mind, but are rather expected to contain completely correct information when
received. To give an example, if an error-tolerant and an error-sensitive application,
such as a file transfer and a VoIP call, are receiving data concurrently, each of them is
identified by, among other information, the destination port that serves as the main
demultiplexing information of different concurrently active connections on a single

46 3. Refector: Protocol-Specific Heuristic Header Error Recovery

system. It is conceivable that an error in the header portion of a packet corrupts the
port number in a way that a packet that was destined for the VoIP connection now
appears to belong to the file transfer, which may result in a corrupted file reception,
an almost catastrophically detrimental outcome that we term a misassignment or
misattribution Any solution that targets header error tolerance therefore needs to
prevent such misattribution to the largest extent feasible. Any benefit of increased
error tolerance needs to be weighed against the risk of misattributions.

Reducing misattributions is generally a goal of the algorithmic design of our error
tolerance scheme, and will be discussed when presenting the respective solutions.
However, we add one general safeguard to our error-tolerance schemes that vastly
reduces the problem of misattributions. We require all applications that are error-
tolerant to signal this capability to the protocol stack. This way, we can completely
prevent any misattributions toward error-sensitive applications: a file transfer will
never be corrupted by a misattributed VoIP packet. The only possible misattribu-
tion is the one toward error-tolerant applications: these can “catch” packets from
other error-tolerant applications, as well as packets from error-sensitive applica-
tions that were misattributed to them. Note that for an error-tolerant application,
such a misattribution should never be immediately fatal: to such an application, a
misattributed packet will simply appear to contain extremely corrupted data. The
concept of error tolerance requires an application to even cope with such a situation.
Obviously, such a misattribution is still highly undesirable: it will almost certainly
reduce decoding quality because unrelated data has been introduced, and (at least
in the case of a misattribution between two error-tolerant applications) the data will
be missing from another connection.

While requiring this opt-in means that error-tolerant applications need to be changed
to gain the benefit of Refector, we consider this a worthwhile tradeoff. First, the
required changes are limited, and application developers who want to make use of
error tolerance can be expected to have self-interest in adapting their applications for
such support. Second, the opposite approach (providing error tolerance by defaulting
and opting out) is infeasible because this would require a change of a large amount of
applications to keep the previous behavior, and to otherwise suffer from potentially
catastrophic communication failures without any benefit to them. Third, a solution
such as UDP-Lite likewise requires changes to the application by switching from one
transport-layer protocol to another. Furthermore, this change has to be implemented
on both the sender and the receiver side. As we will see, Refector does not require
any changes to the sender (although it requires a certain amount of support from
the local network gateway, typically a wireless AP, instead).

Header Error Recovery

After this short excursus, let us conclude this introduction with a discussion on
what header errors mean to a communication system, and a first motivation why
heuristically recovering from those might be feasible.

Under header errors, we need a reliable system to recognize and recover from these
errors. Our approach is motivated and modeled by a real-world analogy. A human

3.1. Introduction 47

mail courier, especially one who has served his locality for a long time, will know
the people living in the streets they serve. Simple typographical errors or smudged
address parts will often not lead to problems in delivery, because the courier can
use their experience (the domain knowledge) to still deliver the letter to the correct
recipient. Such a mail courier can also recognize, even with partially unreadable
addresses, whether a letter was erroneously put into their satchel, and can refuse to
deliver that letter.13

An end host on a network works quite similarly. At any given point in time, an end
host knows which connections are open (which people live in his locality), because
applications open new connections via the OS. It furthermore knows how a packet
for each of these connections is supposed to look like (what the address of every
person is), because the OS needs this information to recognize incoming packets and
assign them to the correct application. A port number, in that respect, is analogous
to a street address. Partially corrupted header information should therefore, in
theory, still result in a correct delivery.

Of course, this reasoning assumes that there is sufficient redundancy in the header
information. Human language is notoriously redundant;14 machine-readable infor-
mation is not necessarily so. However, even a cursory look at the setup of typical
network protocols hints at the amount of redundancy in network protocol headers.
For example, transport-level network protocols such as TCP and UDP use port
numbers to distinguish between different connections on the same machine, and
use 16-bit port numbers for that. There are hence 65 536 possible port numbers,
and a connection is moreover identified by the 4-tuple 〈local IP address, local port,
remote IP address, remote port〉,15 further increasing the possible combinations;
however, on a typical end host, there are rarely more than 100 connections open at
any given point in time.16 The fact that header compression schemes such as Thin-
wire [FDC84] and RObust Header Compression [BBD+01] exist further reinforces
the point of redundancy in network protocol headers. As a rough estimate of the
amount of redundancy, the field-based Thinwire could already reduce headers by
about 50% in size, with ROHC being able to reach more than 90% compression in
perfect conditions.

In the next section, we will look at the setup of IPv4 and UDP headers and assess
the redundancy from a slightly different point of view. To us, redundancy in an
information-theoretic understanding, while certainly important, is not the only fac-
tor in assessing the feasibility of error recovery. The IPv4 protocol header is a good
example of a header that contains a large amount of information that may or may

13And hopefully bring it back to the post office, where it will be handed to the right courier –
but this point is not part of our analogy any more.

14This can easily be seen by compressing text documents with a file compression algorithms such
as Lempel-Ziv [ZL77] or Lempel-Ziv-Welch [Wel84].

15This 4-tuple is often extended to a 5-tuple by adding the IANA-assigned number [IANA15]
that identifies the transport-layer protocol.

16While we do not have a large body of data to support this claim, the reader is encouraged to look
up the number of current Internet connections on their machine via tools such as netstat. In our
experiments, some of which are presented in one of our papers [SAAW11], as well as (independently)
by Martin Henze in his diploma thesis [Hen11], we rarely witnessed more than 60 and never more
than 100 connections under normal usage conditions on end host machines.

48 3. Refector: Protocol-Specific Heuristic Header Error Recovery

not be compressible well, but that, more importantly, is of no use to end hosts. A
prime example here is the TTL field, which contains the number of routing hops a
packet is allowed to take before being discarded (to prevent infinite routing loops).
Once a packet has reached its final destination, the information is of no further prac-
tical use to the receiving application; an error inside this field, however, will still
lead to checksum mismatches and packet drops. We therefore can identify a class
of don’t-care header fields, which, if they contain errors, should not lead to a drop
of the packet. Coming back to our mail courier analogy, a letter with a misspelled
or unreadable country information will not lead to delivery problems on the local
level, either.

Now that we have established that header errors should be, in theory, recoverable, we
will present our work that shows the practical application of these ideas. However,
before we start this presentation, we will conclude this introduction with the design
goals that guided our conceptual decisions for Refector:

1. Refector should be effective at recovering from header errors and at repair-
ing headers where necessary. Conversely, it should prevent misattribution of
packets to wrong applications.

2. Refector should be easily and incrementally deployable. This means Refector
is a receiver-side solution. It should not require any support from the sender,
nor from the intermediate gateways the packet has to pass from sender to
receiver.17 Furthermore, Refector should only incur software changes, since
these can be deployed relatively easily; changes to firm- or hardware must not
be part of the changes.

3. Refector should be as independent as possible from the underlying MAC and
PHY layers. Since protocols on these layers strongly depend on the used
network access technology, this facilitates the use of Refector in a large number
of networks. As long as the MAC protocol provides a way to pass on corrupted
packets to the upper layers without dropping them, Refector should be able to
work on top of it. Furthermore, if the MAC protocol retransmits packets based
on some rules, a way to influence those rules is necessary for good performance.

4. Refector’s protocol changes should keep compatibility. This is a direct conse-
quence of rule 2. While the protocol implementations are changed to facility
error recovery, the communication behavior with other parties (especially the
sender) must stay the same as before, to stay compatible and allow incremental
deployment.

5. Error-tolerant traffic should be an optional addition, and error-tolerant and
error-sensitive traffic must be able to coexist. This means that error-tolerant

17We will see in this chapter and in Chapter 5 that, at least for 802.11 connection, some support
by the AP is necessary to reach good performance. However, we consider this acceptable, since
our target environment, as specified in Section 1.2, is wireless networks for end users and small-to-
medium non-private deployments, in which the AP is under the control of the users, as opposed
to senders in other networks.

3.2. Refector for Stateless Protocols 49

applications need to opt in, that is, signal their error tolerance to Refector.
Only then will they receive corrupted packets. This is done to make sure that
all other traffic will not receive corrupted packets, so that, for example, a file
transfer will not generate corrupt files, and a DNS lookup will not produce the
wrong lookup data because a corrupted packet was received.

3.2 Refector for Stateless Protocols

As a first step, we will present the practical implementation of a header recovery
scheme for stateless protocols. For this work, we focused on IPv4 and UDP. The rea-
soning was that both these protocols are relatively simple due to their statelessness;
that they contain a large amount of fields that can be leveraged for header error
recovery; and, most importantly, that their position in the network stack at the
“narrow waist of the Internet” [Ros08] means that almost every connection will use
one or both of these protocols and therefore will be able to benefit from Refector.18

This is opposed to the MAC and application layer, where no such concentration on
a few protocols exists, and any solution would only be applicable to a small subset
of scenarios.

This section is structured as follows. First, we will discuss the categorization of IPv4
and UDP header fields. In Section 3.2.2, we will discuss how to recover fields that are
important to identify the connection a packet belongs to, if errors occurred in those
fields, and possibilities to increase the robustness of those fields against bit errors.
We will then give a short overview of the implementation of a prototype into the
Linux kernel, before presenting evaluation results in Section 3.2.4 and summarizing
in Section 3.2.5.

3.2.1 Header Fields Categorization

As a first step, we will now analyze the protocol headers of IPv4 and UDP. We
already noted previously that there exist header fields that are of no importance
to the end host, and that we named those don’t-care fields. Conversely, we classify
fields that we care about as vital.

The IP header is shown in Figure 3.1. Disregarding the rarely-used header options,
it has a size of 20 bytes and is divided into the following fields.

Version and IHL: Both these fields contain static values that never change and are
the same for all open connections. The version field contains a 4 to identify the
header as IP, version 4. The Internet Header Length (IHL) contains the length of
the header, expressed in the number of 32-bit words. At a standard header length
of 20 bytes, this is statically 5. Both of these fields do not provide any helpful
insight and are therefore classified as don’t care. The version field is redundant

18TCP is arguably the more widely-used of the two dominant transport protocols. However, its
statefulness means that it does not fit the requirements of this section. Furthermore, the focus of
TCP on reliable data stream transmission is almost the opposite of our error tolerance approach.

50 3. Refector: Protocol-Specific Heuristic Header Error Recovery

0 4 8 16 19 31

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

Figure 3.1 Classification of header fields of the IPv4 header. Vital fields in white, don’t-care
fields in gray.

because, by the time the header is parsed, the end host has already decided to parse
it with an IPv4 parser (typically because the MAC header contains a next-protocol
field that denotes IPv4 as network protocol). The IHL field is redundant under
the assumption that header options are not used. This is reasonable because, in
real networks, IPv4 header options are practically non-existent. A large number of
them has been officially deprecated [PG12]; others are actively filtered by network
gateways because of their harmful potential (such as the originally defined routing
headers).

Type of Service: This field has seen different uses over the years with the goal of
implementing QoS schemes for IP, such as IntServ [BCS94], DiffServ [BBC+98],
or ECN [RFB01]. However, by the time a packet reaches an end host, the QoS
information is not needed any more. We hence classify this field as don’t-care.

Total Length: This two-byte field contains the length of the packet, counting from
the first byte of the IP header. There is little practical use in that information,
because the length of the packet is known from the data received, and we classify it
as don’t-care. In theory, this field could identify whether padding had been added
to the payload on the IP layer. However, there is little reason to add such padding,
especially not on the IP layer since IP does not require a minimum frame length. If
another protocol (such as Ethernet) requires minimum packet/frame sizes, it is that
protocol’s job to add padding, and such padding will be transparent to IP and not
be reflected in this header field, because it will already have been removed by the
time the receiver processes the IP header.

Identification, Flags, and Fragment Offset: These three fields share four bytes and
implement fragmentation for IP. The identification field contains the same number
for fragments of the same IP packet, and different numbers for different IP packets.
The fragment offset denotes the relative position of a fragment in the original packet,
in 32-bit words. The flags contain information about whether a packet must not be
fragmented, or a received packet is a fragment of a larger IP packet. Overall, just
like header options, IP-level fragmentation is a rarely-used feature. Fragmentation
due to MAC/PHY constraints is either done at the MAC layer, or at the transport
or even application layer due to Maximum Transmission Unit (MTU) settings or
automatic MTU discovery [MD90,MH07]. Again, these fields are classified as don’t-
care.

3.2. Refector for Stateless Protocols 51

0 16 31

Source Port Destination Port

Length Checksum

Figure 3.2 Classification of header fields of the UDP header. Vital fields in white, don’t-care
fields in gray.

TTL: TTL has already been mentioned above as an example of a don’t-care field.
It is used to prevent infinite routing loops and contains the number of routing hops
a packet is allowed to take before being discarded, and is decremented on each
intermediate hop. By the time the packet is received by the end host, the TTL does
not serve any practical purpose any more.

Protocol: This field denotes which transport-layer protocol is used, that is, which
protocol handler should be called after IP processing has finished. This information
is vital because there is no other easy way to identify the next protocol, and it is
necessary to identify the correct protocol handler for packet processing.

Header Checksum: This field contains the IPv4 header checksum as introduced
in Section 2.3. As this field denotes errors in the header (of which we already
categorized large parts as don’t-care), while our goal is to ignore the fact that header
errors occurred and to recover from them, we classify this field as don’t-care.

Source and Destination IP Address: The last 8 bytes of a standard IPv4 header con-
tain the IP addresses of the sender and receiver, respectively. We consider these as
vital. Specifically the Source IP Address helps us identify a packet as belonging to a
certain connection: at any given time, a typical end host will have open connections
to a number of different hosts with different IPs. The large size of the field helps
identify the correct connection. On the other hand, the destination address is typi-
cally of less interest: most end hosts will only use one IP address for communication
with the outside world, and hence all connections will have the same field content.
However, this means that there is no harm in adding this field: all connections will
either match perfectly, or match in the same non-perfect way. In the rare case that
an end host uses multiple IP addresses, however, this can further increase recovery
performance.19

In the same way as the IP header, we will now analyze the UDP header. The header
contents are shown in Figure 3.2. As the only job of the UDP header is to demultiplex
connections for different applications, without any additional functionality such as
ordering or reliability, the header is quite simple and contains only four fields of two
bytes each.

Source and Destination Port: Together with the source and destination IP address,
this forms the 4-tuple that identifies a connection (often extended to a 5-tuple that

19Incidentally, this opens up new possibilities for IPv6 header recovery: because even end-users
are often assigned a whole subnetwork for private use by the communications provider, using
different addresses for different connections can be used to increase recovery performance; see
Section 3.5.

52 3. Refector: Protocol-Specific Heuristic Header Error Recovery

includes the used transport-layer protocol). As such, these fields are vital for recov-
ery.

Length: Similarly to the IP length field, this field does not give us any information
that we cannot deduce from other, more reliable sources. We therefore classify it as
don’t-care.

Checksum: Although this field contains a checksum over both the UDP pseudo
header (cf. Figure 2.9, page 34) and the payload of a packet and hence is not the
exact counterpart of the IP header checksum, it similarly and for the same reasons
is of no interest to us and classified as don’t-care.

3.2.2 Recovery of Vital Fields

In the last section, we have seen that a large amount of header fields in the IPv4 and
UDP header are of no interest to the end host. More than 50% of the header bits
belong to fields that can be safely ignored on end hosts in today’s communication
systems. This means that bit errors in these fields will lead to a packet drop under
normal circumstances (because the checksum does not match any more), but does
not if using Refector.

However, a sizable amount of bits is still necessary for identification and demulti-
plexing of packets to the correct communication end-point. Errors in these header
fields cannot simply be ignored. Because this information, the 5-tuple 〈source IP,
destination IP, source port, destination port, protocol〉 is used by the end-host to
identify the correct application, an error inside these fields will mean that identi-
fication fails. In most cases, this will mean that the host cannot find an ongoing
connection with the (erroneous) 5-tuple, and consequently drop the packet. Even
worse, if this information breaks in such a way that it happens to match the 5-tuple
of a different connection, a packet might be assigned to an wrong application. This
misattribution is extremely undesirable, because it can lead to catastrophic failures
of applications. For example, assigning a VoIP packet to an FTP connection means
that the transmitted file will be corrupted.

We will first focus on the first problem: recovering from errors to prevent packet
drops if the 5-tuple contains erroneous information, and will discuss the problem of
misattribution and how it can be alleviated afterwards.

3.2.2.1 Heuristic Recovery of Header Fields

At the beginning of the chapter, we presented our mail courier analogy (page 46)
and how a real-world courier can cope with address errors. We also pointed out
how this analogy fits the situation of an end host, and that protocol headers contain
redundancy that can be leveraged for heuristic error recovery. It is now time to
consider how exactly to do this leveraging.

The approach is quite straightforward. Bit errors that occur as the effect of trans-
mission problems manifest themselves as bit flips in a data stream. With every bit

3.2. Refector for Stateless Protocols 53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-5 10-4 10-3 10-2

P
a

c
k
e

t
E

rr
o

r
R

a
te

Bit Error Rate

20 bytes
100 bytes
500 bytes

1472 bytes

Figure 3.3 Even low BERs already lead to high PERs. Even a 100-byte packet has a 7.6%
packet error rate at a BER of 10−4, and more than 50% at 10−3.

flip, the received data loses some similarity to the originally transmitted data, and
the distance between the two is the Hamming distance.

Let us assume that |b̄| ≪ |b|, that is, the number of flipped bits is much lower than
the number of unflipped bits, which means that the Bit Error Rate (BER) is low.
This is a reasonable assumption, considering that, under normal communication
schemes with packet drops on checksum mismatches, even very low BERs already
produce high Packet Error Rates (PERs) and render communication impossible (cf.
Figure 3.3), because even a single bit error leads to an erroneous packet:

PER = 1 −
(

(1 − BER)n
)

That is, the chance that a packet of length n (in bits) is erroneous increases not only
with BER, but also strongly with packet length. Furthermore, even relatively robust
media coding schemes start degrading noticeably above BERs of 10−4 [NOCW07].

At these relatively low BERs, the received erroneous packet will, with a high prob-
ability, contain values for the vital fields that still closely resemble the expected
fields. We can therefore exchange the standard “perfect match” algorithm, in which
a packet is only assigned to a connection and the application that opened that con-
nection if the 5-tuple exactly matches, with a heuristic matching that, if no perfect
match is found, finds the next closest match, with Hamming distance as a metric.
An example is given in Figure 3.4.

One different approach that we considered is not to use Hamming distance as mea-
surement, but instead a metric that is adapted to the idiosyncrasies of the modula-
tion and coding scheme of the used MAC and PHY technology. Hamming distances
can be expected to work best if bit errors are independently distributed over the
length of a packet (and hence each header field only suffers from few errors), a
property that real-world MAC/PHY systems cannot always satisfy. However, we
decided to keep Hamming distances as metric for several reasons. First, using spe-
cialized distance metrics that take effects of underlying technologies into account

54 3. Refector: Protocol-Specific Heuristic Header Error Recovery

1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1incoming packet

1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1connection 1

1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1connection 2

Figure 3.4 An example of port matching via Hamming distance. An incoming packet’s port
field of 16 bits is matched against the expected values for two flows. Flow 2 is chosen in this
example because of the lower Hamming distance (2 vs. 4).

means that our approach loses some of its generality, and thus goes against design
goal 3 (independence from MAC and PHY). As it stands, it considers the net-
work and transport layer, and can be used with any set of upper and lower layer
protocols. Specialized distance metrics would dilute that generality. Second, while
many widely-used wireless communication technologies, including 802.11, do exhibit
bursty tendencies of unequal bit error distribution, such distributions are not easily
expressible and often occur on longer scales than the 8–32 bit field sizes we con-
sider [WKHW02]. Furthermore, the bit error distribution strongly depends on the
used hardware [HJL+09,HJL+12], introducing yet another variable to consider in a
tailored approach, requiring complicated and cumbersome measurements and test-
ing for any devices to be used, which significantly complicates deployment and hence
contradicts design goal 2 (easy and incremental deployment). Third, as we will see
over the course of this and the next chapter, the Hamming distance method already
works so well that it is questionable whether potential performance improvements
justify this additional effort.

3.2.2.2 Port Allocation

Recovering from errors works better the larger the Hamming distance between the
header fields of different connection: if a connection has at least a distance d to all
other connections, up to

⌈
d
2

⌉

bit flips can be corrected, that is, up to that many bit
flips can be tolerated by our scheme before misattributions occur. It is therefore
desirable to increase the Hamming distance between open connections. However,
the possibilities for this are limited. An end host typically has one fixed IP address,
so this field is the same for all connections. The remote host’s IP address cannot be
influenced; however, the IP addresses of different remote hosts will typically show
large differences (which is to our benefit) unless most communication is within lo-
cal networks. The remote port, as well as the protocol, are similarly unchangeable.
However, the end-host has some choice in assigning a local port to a new connection.
For non-server connections, the Internet Assigned Numbers Authority (IANA) de-
fined a “private ports” range between 49152 and 65535 [CET+11]. Many operating
systems extend this range to start from 32768. Within this range, a host can choose
a port to assign to a new connection. This port choice can be done in a way that
maximizes the Hamming distance.

3.2. Refector for Stateless Protocols 55

generator polynomial data
bits

code
bits

minimum
distance

corrects
errors

usable
ports

x4 + x + 1 11 4 3 1 2048

x8 + x7 + x6 + x4 + 1 7 8 5 2 128

x10 + x9 + x8 + x6 + x5 + x2 + 1 5 10 7 3 32

Table 3.1 Some examples for generator polynomials for BCH codes. We used their property
to create codewords of a given length and guaranteed minimal Hamming distance to choose
port numbers that are distant enough from each other to be resilient to a certain number of
bit errors.

One possibility to achieve this would be to calculate a port with maximum Hamming
distance to all other ports on-the-fly, whenever a new port is opened. However,
this not only means additional overhead; it can also mean that later, additional
ports have to cope with comparatively low Hamming distances: As an example,
consider one open connection with destination port number p1 = 000000 (in a
theoretical system with 6-bit ports). Once a second connection opens, the maximum
Hamming distance is achieved by flipping all bits, that is p2 = 111111. A third
connection can now only achieve a Hamming distance of 3, for example, 111000: for
each bit it distances itself from p1, it approaches p2. If we had catered for a third
connection from the beginning, a higher minimum Hamming distance would have
been possible by assigning 000000, 001111, and 111100, guaranteeing a minimum
Hamming distance of 4. A greedy approach hence does not deliver satisfactory
results.

Instead, we decided to use a system that precalculates admissible ports. We em-
ployed BCH codes [BRC60] to create a set of ports that all have a guaranteed
minimum Hamming distance from each other. A BCH code is a polynomial error-
correcting code over a Galois field GF (qm) defined by a generator polynomial. Cal-
culation of codewords has close similarities to the calculation of CRC codes (cf.
Section 2.3 for details): the data to be encoded, in binary notation, is padded with
zeroes according to the degree of the generator polynomial, and then divided by
the binary representation of this generator polynomial. The remainder is added
to the data and contains the redundancy. On the receiver’s side, a number of bit
flips, specific to the used generator polynomial and the redundancy added by it,
can be recognized and corrected. The larger the generator polynomial, the more
redundancy is added, but the more overhead is introduced.

In our case, the choice of generator polynomial for the BCH code balances the
number of usable ports against the introduced robustness. As the port field has 16
bits, but the first bit has to be 1 to start at port number 32768, we have 15 bits
available, and as such, Refector uses a BCH code over GF (215). The port numbers
are then created by taking the BCH code words and prepending a binary 1. Several
examples of generator polynomials are given in Table 3.1. For Refector, we decided
to use the generator polynomial x8 + x7 + x6 + x4 + 1, as it allows us to use 128
ports concurrently. This should suffice for typical end hosts, as we already discussed

56 3. Refector: Protocol-Specific Heuristic Header Error Recovery

at the beginning of this chapter.20 Using this generator polynomial, all 128 possible
binary values, from 0000000 to 1111111, are BCH-encoded with the above generator
polynomial, creating the used ports. For example, for 1011011, the steps to create
the port number are:

1. Pad 1011011 with 8 zeroes, according to the degree of the generator polyno-
mial, producing 101101100000000.

2. Divide 101101100000000 by the binary representation of the generator poly-
nomial x8 + x7 + x6 + x4 + 1, 111010001, resulting in the remainder 1101101.

3. Add the remainder in place of the padding, resulting in 101101101101101.
Finally, prepend the 1, resulting in 1101101101101101, or port 56173.

All 128 ports created this way are guaranteed to have at least a Hamming distance
of 5 to every other port such created, allowing the correction of at least to bit errors.
Again, note that this set of ports is precalculated; there is hence no computational
overhead introduced by this scheme at runtime when the OS has to assign a new
port, since it only has to pick a port from the static, precalculated list.

3.2.2.3 Analytical Approximation of Port Selection Performance

This guaranteed minimum Hamming distance of 5 greatly increases the robustness
of the destination port field against random bit errors. To quantify this gain, we
will give an analytical approximation. Note that in this section, we assume a binary
symmetric channel, that is, the probability of each bit being flipped solely depends
on a static BER, not on its value or any other previous or successive error events:
the errors are independent from each other. We will only give the final terms for
each worst-case approximation in this section. Appendix A gives a more detailed
derivation.

Under an OS’s standard port allocation scheme, which does not aim to maximize
Hamming distance, the distance between two ports can be as little as one. The
differing bit then becomes the deciding factor for the choice of attributing a packet
to one or the other port (all other information being equal). This means that the
misattribution rate is equal to the BER. With increasing numbers of connections,
the worst case becomes a situation in which all 1-bit neighbors of a port are used, and
therefore any bit error in the port field leads to a misattribution. The misattribution
rate can then be approximated as:

(

(1 − BER)15
)

(3.1)

Refector’s port selection algorithm, on the other hand, guarantees a minimum Ham-
ming distance of 5 by employing the aforementioned BCH code. The worst case can

20In our implementation, the port allocation scheme falls back to the default scheme if the 128
ports are ever exhausted. If the OS honored the IANA suggestion to start the private port range
at 49152 instead of 32768, our BCH code would degrade to 64 available ports, after which, again,
the standard port scheme would be used.

3.2. Refector for Stateless Protocols 57

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

10-4 10-3 10-2 10-1 100

M
is

a
tt

ri
b

u
ti
o

n
 R

a
te

Bit Error Rate

Standard port choice
Refector port choice

(a) absolute difference

100

101

102

103

104

105

106

107

10-4 10-3 10-2 10-1 100

Im
p

ro
v
e

m
e

n
t

Bit Error Rate

relative robustness

(b) relative difference

Figure 3.5 Comparison of the standard port choice and Refector’s port choice in worst-case
scenarios via analytical approximation. Note the logarithmic scales on both axes. Refector’s
port choice is significantly more robust. Furthermore, its robustness translates very well at
low to moderate BERs: The right graph shows the quotient of the standard port allocation’s
misattribution rate, divided by Refector’s misattribution rate. At low to moderate BERs,
Refector is several orders of a magnitude more robust than the standard port allocation.

therefore be approximated by a situation in which all 5-bit neighbors of a port are
used, and any combination of 3 bit errors produces a misattribution.21 This can be
expressed as:

1 −
15∑

k=3

(

15
k

)

BERk (1 − BER)15−k (3.2)

Figure 3.5 shows the difference in robustness for the two port allocation schemes
by plotting BER against misattribution rate. Two effects are apparent here. First,
Figure 3.5a shows the misattribution rate of the two port allocation schemes in the
worst-case scenario as a function of the BER. At unrealistically high BERs, the
difference becomes negligible as both schemes fail. However, at less pathological
BERs, it is apparent that Refector outperforms the standard port choice signifi-
cantly. For example, at 10−4, the standard port choice produces a misattribution
rate of ≈ 1.5 · 10−4, while Refector’s misattribution rate is only ≈ 4.5 · 10−10, while
at a BER of 10−2, the misattribution rates are ≈ 14% and ≈ 0.04%, respectively.
Moreover, the lower the BER, the higher the relative improvement in robustness, as
can be seen in Figure 3.5b. At a BER of 10−2, Refector is already more than 100
times more robust, while at a BER of 10−4, the difference is more than 6 orders of
magnitude.

21This is in fact strictly worse than the result of applying the BCH code; while 5 is the guaranteed
minimum Hamming distance, no code word created by the BCH code (and therefore no port in
Refector’s port selection scheme) will have that minimum distance of 5 to every other port; there
are always some ports with a higher Hamming distance.

58 3. Refector: Protocol-Specific Heuristic Header Error Recovery

3.2.3 Implementation

We implemented Refector in the network stack of the Linux kernel, version 2.6.32.
This required patching the kernel in several locations, which can conceptually be di-
vided into four fields: the error-tolerance implementations for IPv4 and UDP them-
selves, changes to the 802.11 MAC layer’s handling of corrupted frames, extension
of the socket interface, and support for ACK-less traffic.

Repair Techniques

As a first step, we need to keep track of IP addresses and ports that are open at any
given point in time. While this information is already contained in the kernel, it is
kept in highly optimized hash table data structures designed for quick lookup of, for
example, a socket indexed by a port number, not for traversal of all port numbers.
Hence, we created an additional linked list that contains information about currently
open ports. To keep this list updated, we hooked into the functions that create and
delete IP devices and sockets, and let them update this list.

Furthermore, we changed the main packet processing routines for IPv4 and UDP to
run our heuristic header error repair at the beginning. Hence, we patched ip_rcv

and __udp4_lib_rcv accordingly. The actual repair was done in two functions,
repair_ip_hdr and repair_udp_hdr, which were called if a packet had a checksum
mismatch. These functions checked every header field and repaired it as well as
possible, according to the design laid out in the previous section. Static fields were
repaired to static values; IP addresses port numbers were repaired by finding the
nearest Hamming distance match.

MAC Support

While we focus on IPv4 and UDP in this part of our work, we still need a modicum
of support from the underlying MAC layer. This is due to the fact that MAC
protocols typically (and 802.11 is no exception) employ checksums covering the
complete frame to recognize reception errors. Therefore, we need to patch the MAC
protocol implementation to not drop those frames. In the case of MAC, due to its
close relation to the hardware being used, there is an additional problem. Checksum
checking is often already done in hardware on the network adapter, and frames with
failed checksums are dropped before they ever reach the kernel. This behavior is
governed by the network adapter’s chipset. For our purposes, if it is present, it must
be disengageable. Thankfully, most consumer cards, while they do drop frames in
hardware as standard behavior, have flags with which the driver can instruct the card
to deliver all frames.22 Two (at the time of the experiment) popular chipsets that
support this behavior are the Atheros ath5k [ath5k] and the Broadcom b43 [b43].
While the b43 driver worked without any changes, the ath5k driver’s code dropped

22Note that this is different from such settings as monitor mode, in which the card is put into a
promiscuous sniffing mode. In our approach, the drops due to checksum checks are switched off,
but the card is kept in infrastructure mode.

3.2. Refector for Stateless Protocols 59

such frames regardless and needed to be changed in that respect. In addition, the
aptly named function should_drop_frame function in the Linux kernels mac80211
hardware abstraction layer needed to be patched to not drop frames with failed
checksums.

Note that these changes do not introduce any error recovery; if fields in the MAC
header were corrupted, frames were typically dropped during processing. These
changes merely allow receiving corrupted frames at all.

Finally, we used the fact that the MAC-layer checksum covers the complete frame
to keep track of corrupted frames. Hence, we added a l2_check_failed flag to the
sk_buff structure that contains all information about a network packet in the Linux
kernel. This way of keeping track whether the packet had any errors was used for
additional signaling in the socket interface between the kernel and the application.

Kernel–User Interface

We extended the socket interface between user and kernel space with additional
signaling capabilities. Signaling as such is already present in the socket interface.
Special socket settings can be changed by using the setsockopt system call, for
example, to change the sizes of buffers associated with the socket. We added a socket
option SO_BROKENOK which signals to the kernel that this connection is error-tolerant.
With this opt-in approach, we ensure that we never will assign broken packets to
applications that cannot deal with them. All packets, regardless of whether they
belong to an error-tolerant or an error-sensitive connection, will pass through the
heuristic repair stage if they are broken. This is indeed necessary since we do not
know which connection a packet belongs to before it has passed the protocol handling
routines, and our heuristic repair has to take place before those routines so they
do not fail on erroneous header contents. However, if a packet, after repairing,
is identified as belonging to an error-sensitive connection, it is dropped instead of
assigned to that connection’s socket.

We also implemented signaling from the kernel to an error-tolerant user-space ap-
plication. If a packet is corrupted, it might be beneficial for the application to be
informed of that situation; for example, a codec might put less emphasis on its con-
tents than on those guaranteed to be correct. The recvmsg system call to receive
data from a socket already has provisions to signal ancillary data belonging to that
packet. We added a MSG_HASERRORS flag that can be read by the application to check
whether the received data potentially contains errors. To decide whether a packet
contains errors, we check the UDP checksum: if it does not match, then there are
errors somewhere in either the (UDP pseudo) header or the payload of the packet.
Note that this information errs on the side of caution: since the UDP checksum
covers the payload, the UDP header, and parts of the IP header in the form of the
UDP pseudo header, there might be no errors in the payload of the packet, and the
data received from the socket may be error-free. This, however, is the most exact
information we can provide, since there is no checksum provided that only secures
the payload. Conversely, if MSG_HASERRORS is not set, the application can be sure

60 3. Refector: Protocol-Specific Heuristic Header Error Recovery

that there are no errors present (save for very rare situations in which an error was
not recognized by the UDP checksum).

No-ACK for Error-Tolerant Streams

We suggested before (cf. Section 2.4) that ACKs for error-tolerant streams are prob-
lematic due to the question of what an ACK is supposed to signal in such a case.
Since the 802.11e QoS extensions allow the sending of frames without ACK, we
decided to use that scheme. However, while we introduced it in Section 2.5, we
deferred a detailed explanation of how to identify which packets to send without
ACKs, since the 802.11 MAC layer has no concept of different upper-layer streams,
and the setting is done per-frame.

In our implementation, we use the IPv4 Type of Service (ToS) field, which al-
ready was designed to hold QoS information. In fact, the Linux kernel already
implements a translation between ToS and 802.11e’s Access Categories (ACs) in
ieee80211_set_qos_hdr function. The 256 possible ToS values23 are mapped to
the 8 Traffic Identifiers (TIDs) and then further to the 4 ACs by only considering
the 3 most-significant bits of the ToS. Hence, for example, all ToS values between
0 and 31 are assigned TID 0 and to AC_BE, while all values between 192 and 223
are assigned 6 and AC_VO, respectively.

We added a logic to the above function, which also governs whether 802.11 frames
are sent with or without acknowledgments, that allowed to set certain ACs as No-
Ack classes. By setting a flag that we made available via the proc filesystem, we
were able to, for example, send all frames that had a TID of 5 or higher without
ACKs. In our experiments, we then had the sender send its packets with a ToS that
would translate into a TID that we set as No-ACK.

3.2.4 Evaluation over 802.11

The central questions our evaluation has to answer directly stem from the previous
explanations about the benefits and drawbacks of Refector, namely:

1. How does the Packet Delivery Rate (PDR) improve compared to existing ap-
proaches?

2. How often does misattribution occur?

In addition, we will also provide insight into the question of whether error tolerance
is compatible with encryption.

23Note that the number 256 refers to the internal representation in the Linux kernel. This
generic, 8-bit ToS value is then mapped onto the available precision inside protocol headers. For
example, if Differentiated Services [NBBB98] are used, the field is is mapped onto the 6 available
bits in the IPv4 header, the remaining two bits of the original ToS field being reserved of other
uses, such as Explicit Congestion Notification (ECN).

3.2. Refector for Stateless Protocols 61

To answer Question 1, we chose to compare ourselves to UDP-Lite. The reasoning
for this is that UDP-Lite is a standardized protocol that implements tolerance to
(application-layer) payload errors.24 It is readily available as it is implemented in
the Linux kernel, and forms a reasonable baseline as state-of-the-art. Refector’s
advantage over UDP-Lite is tolerance to header errors, so comparing ourselves to
UDP-Lite answers two questions simultaneously whose meanings are equivalent:
(1) What is the performance gain of Refector over a state-of-the-art solution? and
(2) What is the performance advantage of header-and-payload error tolerance over
payload-only tolerance, that is, what is the advantage of header error tolerance?

3.2.4.1 Experimental Setup

To answer both questions put forward, we set up a small 802.11 network of five
machines, one emulating an AP via hostapd [hostapd], the other four running as
STAs with our Refector changes, which we implemented into Linux kernel 2.6.32.27.
All machines used wireless network adapters with the ath5k [ath5k] chipset. The
machines were deployed in the RWTH Aachen computer science building, which
meant numerous other competing and interfering networks at the same location
(first and foremost eduroam, but also other smaller, local deployments). We con-
sciously chose a channel already in use (channel 5) to stimulate the competing and
interfering nature of the traffic. This scenario models our target scenario well: a
small home network with one AP and one or several STAs, and various interfering
802.11 networks from neighbors.

As the other networks within the building were not under our control, we did not
have controllable and reproducible settings for our experiments. We offset this dis-
advantage by lengthy measurements over the course of many days and nights. Ad-
ditionally, we provoked different error rates in the experiments by setting static
transmission rates (from 1 Mbit/s to 54 Mbit/s) and switching between them be-
tween experimental runs.

Furthermore, we interleaved the sending of packets of the Refector streams and the
UDP-Lite streams that we used as comparison point to produce results in which at
least slow fading and other slow channel changes would not influence our results.

Each experimental run consisted of 10 000 packets per flow, with one Refector and
one UDP-Lite flow being sent concurrently to a machine. We evaluated results from
800 runs, 200 for each receiving machine. The witnessed PDRs spanned the range
from below 20% to 99%. Connections that resulted in PDRs outside this range were
removed from consideration. The reasoning for this was as follows. First, PDRs
below 20% over an extended time frame mean that channel quality is so low that
there is a high probability that even the basic management frames such as beacons
and association frames will not be reliably received any more. In this case, associ-
ation of a STA to the 802.11 network, and therefore any data transmissions, would
fail, or the association would be lost during the experiment, terminating the connec-
tion. Because broken connections do not give much insight into the performance of

24In the following, whenever we discuss UDP-Lite, we assume the checksum coverage to be set
to 8 bytes to only cover UDP-Lite’s header, thereby implementing payload error tolerance.

62 3. Refector: Protocol-Specific Heuristic Header Error Recovery

Refector and UDP-Lite, we removed these runs from consideration. Second, almost
every run showed a small amount of packets that were completely lost, that is, either
dropped by the MAC (for which there is no Refector support currently) or not even
sensed as packets by the PHY. This is most likely due to collisions on the wireless
channel and an effect of sharing the channel with other networks. At PDRs above
99%, this effect accounted for virtually all packet losses. Because neither Refector
nor UDP-Lite have any effects on these losses and because, due to their randomness,
results did not produce much meaning, we removed these runs from consideration.
After removing such broken connections from our runs, as well as connections which
did not produce any errors whatsoever, 505 runs remained for consideration.

3.2.4.2 Influence of Packet Size on Packet Loss

Note that above, we did not discuss packet size as parameter in our experimental
setup. This is because for this evaluation, results are independent of packet size.
Hence, there is no need to look at different packet sizes in our evaluation. This point
warrants a short discussion however, as to the reasons for this unimportance. Under
normal conditions, different packet sizes produce strongly different PDRs under the
same environmental conditions (cf. Figure 3.3). However, for both UDP-Lite and
Refector, packet size is of no consequence.

This is substantiated by a short experiment we ran between our AP machine and
one of the STA machines. For several packet sizes, we set up UDP, UDP-Lite,
and Refector connections and measured the PDR under comparable environmental
conditions (see above for the explanation about interleaving of connections) and
with statically set 802.11 rates to provoke different levels of BERs. The results are
presented in Figure 3.6.

As expected, Figure 3.6a shows a decrease in PDR as packet size increases. On
the other hand, both UDP-Lite (Figure 3.6b) and Refector (Figure 3.6c) show no
significant difference in PDR between different packet sizes. This is, of course,
because, while with standard UDP, an error in any part of the packet leads to a
packet drop (therefore increasing the chance of a packet drop with increasing packet
size), with both UDP-Lite and Refector, the size of the packet areas in which errors
can lead to a drop are of static size. In UDP-Lite, the payload is error tolerant:
checksum mismatches and subsequent packet drops only occur if the error is in the
UDP-Lite header, not the payload. In Refector, both the payload and (most) headers
are error-tolerant, so only errors in the MAC header or during reception on the PHY
lead to packet drops. Note that the UDP-Lite results benefit from our changes to the
MAC layer that allow corrupted frames to pass, as described in Section 3.2.3, which
were activated during these and all following experiments. A UDP-Lite without this
support would in effect behave like UDP: since frames are dropped on the MAC
layer if they contain any errors, UDP-Lite’s payload error tolerance is irrelevant,
and consequently, its packet drop rates will increase with packet size. Also note
that these graphs already foreshadow results from our evaluation proper: Refector’s
PDRs are slightly, but consistently, above those of UDP-Lite.

3.2. Refector for Stateless Protocols 63

 0

 20

 40

 60

 80

 100

54 48 36

payload
size [byte]

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 [

%
]

Bitrate [MBit/s]

50
100
500

1470

(a) UDP

 0

 20

 40

 60

 80

 100

54 48 36

payload
size [byte]

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 [

%
]

Bitrate [MBit/s]

50
100
500

1470

(b) UDP-Lite

 0

 20

 40

 60

 80

 100

54 48 36

payload
size [byte]

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 [

%
]

Bitrate [MBit/s]

50
100
500

1470

(c) Refector

Figure 3.6 The influence of payload size on packet loss depends on the used protocol, and
whether it provides tolerance to errors. UDP does not provide such tolerance, with its checksum
covering both header and payload, so the payload size has a strong influence on the packet
loss rate. Contrarily, UDP-Lite with a header-only checksum coverage, and Refector, which
tolerates errors in headers and payload, have a reception rate independent of payload size.

Due to these results, we can abstract from packet size as a parameter for the remain-
der of this evaluation section. Nevertheless, we used different payload sizes (50, 250,
500, 1000, and 1470 bytes) for different runs in our evaluation as a safety measure
to rule out potentially unaccounted effects. As we did not witness any such effects,
we will combine them in one result and not split them by packet sizes for the rest
of the evaluation.

3.2.4.3 Packet Delivery Rate

We can now focus on answering the two questions put forth in Section 3.2.4. We
will first investigate the increase of PDR due to header error tolerance as provided
by Refector. Because, as mentioned above, environmental effects on the wireless
channel were beyond our control, we always interleaved a Refector and a UDP-Lite
connection to the same receiver, alternating back and forth by sending one packet for
one connection, followed by one for the other, and so on. We then compared these
two connections, which would have witnessed similar environmental conditions, to
each other, and looked at the PDR increase of Refector compared to UDP-Lite.

64 3. Refector: Protocol-Specific Heuristic Header Error Recovery

20%

30%

40%

50%

60%

70%

80%

90%

99%

20% 30% 40% 50% 60% 70% 80% 90% 99%

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

te
 R

e
fe

c
to

r

Packet Delivery Rate UDP-Lite

0%

20%

40%

60%

re
l.
 i
m

p
ro

v
e

m
e

n
t

average

Figure 3.7 Comparison of UDP-Lite and Refector by packet delivery rate over 400 runs from
different stations. The lower graph shows a direct comparison between each UDP-Lite/Refector
pair of runs. Data points above the diagonal line denote improved performance of Refector
over UDP-Lite. The upper graph shows the relative improvement (packet loss using UDP-Lite
divided by packet loss using Refector) of Refector over UDP-Lite. On average, we witnessed
an improvement of about 27%.

The results are shown in the lower portion of Figure 3.7. Each data point denotes
a connection pair, with the PDRs for UDP-Lite and Refector as the x and y values
of the coordinate system, respectively. This means that whenever a data point is
above the diagonal line, Refector performs better than UDP-Lite, which is virtually
always the case.

Results with PDRs below 20% and above 99% missing is due to the filtering explained
in Section 3.2.4.1. The fact that there are more results towards the extreme ends
than in the middle is due to difficulty of setting up wireless channels to produce
“medium quality” results, that is, PDRs that are neither very high nor very low.
This is chiefly due to the fact that most Modulation and Coding Schemes (MCSs)
show a very fast transition from near-perfect to near-zero transmission success, and
consistently provoking an error rate somewhere in between requires careful setup
of the network, taking even such effects as exact antenna positioning into account.
Even then, minute and uncontrollable outside effects such as people moving along
the hall of the building and attenuating the signal can move results out of that
narrow area again.

While the lower portion of Figure 3.7 already shows that Refector outperforms UDP-
Lite, the gains might not seem overly impressive. One factor that reduces Refector’s
performance is that we only apply recovery techniques to IP and UDP. The 802.11

3.2. Refector for Stateless Protocols 65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0% 10% 20% 30% 40% 50% 60%

C
D

F

Improvement over UDP-Lite

Figure 3.8 Relative improvement of Refector over UDP-Lite, using the same dataset as in
Figure 3.7, visualized as CDF.

MAC header, at a size of 26 bytes almost as large as the IP and UDP headers com-
bined, does not have any error tolerance implemented. While we disabled frame
drops due to MAC layer checksum mismatches, errors in the MAC lead to frame
drops with a high probability (for example, if the receiver MAC address is cor-
rupted). However, even considering this, the visualization in the lower portion of
Figure 3.7 is somewhat unfavorable because it disregards the relative improvements
provided by Refector. For example, towards the high end, Refector’s improvements
are very low: if only 1% of all packets would be lost with UDP-Lite, Refector’s
potential improvement is only those 1%. On the other hand, those 1% can make
a noticeable difference in quality: many error-tolerant applications, such as audio
streaming codecs, will show their most noticeable quality degradation early on, so
the difference between 1% and 2% packet loss, or 1% and 0.5%, can be significant.
In contrast, the 10% difference between a UDP-Lite stream with 50% PDR and a
Refector stream with 60% PDR will probably be almost inconsequential, because
at such high loss rates, meaningful communication will be impossible. We therefore
also visualize Refector’s improvement over UDP-Lite as relative improvement, by
dividing UDP-Lite’s packet loss rate by Refector’s:

PLRUDP −Lite

PLRRefector

These relative improvements are shown in the upper portion of Figure 3.7, with each
data point visualized as bar to show the improvement, at the x-axis position at which
it occurred in the lower graph. That means that the x-axis of the upper graph can be
read as PDR: to the left are the worst and to the right the best channel conditions.
This shows that relative improvements are especially high when the overall PDR is
already high, that is, Refector can recover a large portion of those packets that are
lost by UDP-Lite in those conditions. The average relative improvement of Refector
over UDP-Lite was 27% over the course of our experiments. In the area of 95% and
more PDR, this relative improvement was generally over 40% (often much higher),

66 3. Refector: Protocol-Specific Heuristic Header Error Recovery

meaning that packet loss could be almost halved (or even more than halved, in many
situations).

Figure 3.8 shows the overall relative improvements as a CDF. While the average
relative improvement was 27%, the CDF shows that the median was 19%. However,
this is mostly due to lower relative improvements at high loss rates. It also shows
that in this experiment, both average and median are of little expressiveness on
their own. They can be almost arbitrarily skewed by the number of experiments in
certain quality ranges. The results and their behavior over the range of PDRs is of
more importance: Refector virtually always outperforms UDP-Lite, and the relative
improvements are largest in the area where they matter most: when Packet Loss
Rate (PLR) is still low enough to allow reasonable communication quality.

3.2.4.4 Misattribution

As discussed before, the main disadvantage of Refector, and header error tolerance
in general, is the possibility of misattribution. We hence need to investigate whether
such misattributions occur, and how often they do. While we gave an analytical ap-
proximation of misattribution rates (cf. Section 3.2.2.3), we assumed independently
distributed bit errors. This is a simplification, and real-world measurements have
shown bursty tendencies to varying degrees [WKHW02, HJL+09, HJL+12]. Conse-
quently, we measured misattribution rates in our experiments and compared them
to the analytical approximation.

Note that there are two types of misattribution that are conceivable: On the one
hand, a packet can be misattributed to the wrong application, but on the correct
host. This can happen if the destination port is corrupted. On the other hand, a
packet can be misattributed to (a wrong) application on a different host. This could
happen if the destination IP address is corrupted, and a host accepts a packet as
its own that was destined for another one. In this case, misattribution can actually
involve duplicate processing of the packet on two or more hosts, because one host
accepting a packet does not preclude another host from also accepting it. However,
in all our experiments, we never saw even a single occurrence of this latter case.25 We
assume that this is due to the fact that, to accept a packet erroneously, in addition to
a corruption in the IP address that coincidentally matches another host’s IP address,
the MAC address would also have to be corrupted in a way that matches the other
host’s MAC address. Since we did not employ heuristic repair techniques at the
MAC layer, such a corrupted address would have to exactly match the other host’s
MAC address, which is extremely unlikely considering the MAC address’s size of 48
bits.

One problem in measuring misattributions is that these typically occur when error
rates are high. This means header contents are not reliable any more and cannot be

25This is also the reason why the analytical approximation, which only investigated misattribu-
tions due to errors in the port field, and the real-life measurements can be compared. Since no
misattributions between different hosts occurred, all misattributions were between applications on
one host, and the decision which application to hand the packet to relies on the destination port
field.

3.2. Refector for Stateless Protocols 67

 0

 0.002

 0.004

 0.006

 0.008

 0.01

10-4 10-3 10-2 10-1

M
is

a
tt

ri
b

u
ti
o

n
 R

a
te

Bit Error Rate

Measured results
Analytical approximation

Figure 3.9 Packet misattribution rates for two concurrent Refector applications, measured
in our evaluation setup, and compared to the analytical approximation for destination port
misattribution given in Section 3.2.2.3.

used to evaluate whether a misattribution occurred. We therefore needed additional
information to identify packets that would still be available if headers had witnessed a
large degree of corruption. Hence, we filled the payloads of packets with bit patterns
specific to each application flow. Even if a packet header was completely corrupted,
this still allowed identifying the original sending and receiving application.

To evaluate misattribution, we ran two instances of a Refector-enabled test applica-
tion that recorded packets on each of our four test hosts, and consequently 8 sending
applications on the AP. Due to the very low volume of misattributions, we increased
the number of packets per flow per experimental run to 100 000 packets (from 10 000
in the PDR tests).

The results from these experiments are shown in Figure 3.9. However, two remarks
are important. First, a misattribution is not immediately fatal to an error-tolerant
application. This is due to the design of such an application: to it, a misattributed
packet will merely appear to have an extremely high error rate (because the contents
strongly differ from the expected contents); nevertheless, such a misattribution is
undesirable because it will decrease decoding quality of the application. Second, the
BER noted on the x-axis of Figure 3.9 was calculated from the bit errors seen in
the payload of the packet. Since each application flow had its payload filled with a
characteristic bit pattern, the BER could be calculated from counting the erroneous
bits in the payload. For misattribution, however, the BER in the header portion is
important. This means that the BER given in the figure is only an approximation
to the true BER. However, it has been shown [WKHW02, HJL+09, HJL+12] that,
while the frequency of bit errors does not stay the same over the length of a packet,
the differences stay within a reasonable range. Depending on modulation, coding,
and the hardware used, bit rates between the start and the end of a packet typically
deviate by less than a factor of 2 which, while not insignificant, has little influence

68 3. Refector: Protocol-Specific Heuristic Header Error Recovery

on the range of values shown in our evaluation. Therefore, in this case, header BER
can be reasonably approximated by payload BER.

Coming back to the evaluation results, up to BERs of 10−2, misattribution rates stay
very low, with often not a single misattribution occurring. As we already pointed
out, such a BER is already extremely high and barely usable (cf. [NOCW07] and
Figure 3.3). At more realistic usage scenarios, with BERs at or below 10−3, misattri-
bution are effectively non-existent, with not a single occurrence in our experiments.
Finally, it can be seen that the analytical approximation from Section 3.2.2.3, given
the uncertainties about the actual BER within the header’s destination port field,
provides a reasonably close match to the measured results.

3.2.4.5 Encryption

So far, the evaluation abstracted from the concept of encryption and used unen-
crypted communications. However, the vast majority of wireless links uses some sort
of encryption because the overhearing of wireless transmissions otherwise makes all
communications susceptible to eavesdropping from other users in the vicinity.

Encryption algorithms can be sorted into two categories. One category are so-called
stream ciphers, in which the data is encoded as a stream of bits, bit-by-bit. Other
algorithms are block ciphers, that is, they operate on a complete block of a certain
size of bits as an indivisible operation. The most important difference between the
two from the point of view of error tolerance is the property of error propagation,
that is, whether a single bit error in the encoded stream produces only one bit
error in the decoded stream, or more than one. Typically, stream ciphers do not
have any error propagation: a single bit error in the encoded stream maps to a
single bit error at the same position in the decoded stream. For block ciphers, the
error propagation strongly depends on the block chaining technique used with the
algorithm. The effects can vary from single bit errors in the received data producing
only single bit errors in the decoded data, to corruption of the block of data in which
the bit error occurred, the block and its successor, the block and all its successors,
to the complete corruption of the whole message [BV09,Riv97].

802.11 provides both types of ciphers. As stream cipher, it uses Temporary Key
Integrity Protocol (TKIP) with RC4, while for a block cipher, it uses CCM mode
Protocol (CCMP) with AES. For this evaluation, we will use TKIP/RC4, because
it lends itself more to the use case of error-tolerant transmissions. Note that in the
most recent version of the standard [IEEE12b], TKIP/RC4 has been deprecated due
to security concerns. The evaluation in this section should therefore not serve as a
suggestion to set up an 802.11 with this coding scheme, but rather as a general inves-
tigation of the influence of encryption on error-tolerance. It is important to consider
that stream ciphers themselves are not insecure; rather, 802.11’s implementation of
RC4 with TKIP is not specified and realized in a secure fashion.

There are two more problems regarding this evaluation that are specific to 802.11.
One problem is that, if encryption is used, 802.11 introduces a second checksum
into the frame, the Message Integrity Code (MIC), which provides another check for

3.2. Refector for Stateless Protocols 69

20%

30%

40%

50%

60%

70%

80%

90%

99%

20% 30% 40% 50% 60% 70% 80% 90% 99%

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

te
 e

n
c
ry

p
te

d

Packet Delivery Rate unencrypted

-50%

-25%

0%

25%

average

re
l.
 i
m

p
ro

v
e

m
e

n
t

Figure 3.10 Effect of (TKIP/RC4) encryption on Refector. Due to the fact that bit errors
in the Initialization Vector (IV) produce unrecoverable errors during decryption, encryption
reduces the effectiveness of Refector. However, at good channel conditions, the effect is not
as pronounced, and on average, the loss in effectivity is low.

message integrity. As with the CRC, the MIC checks have to be disabled to accept
frames with mismatches. This has potential security implications, especially in com-
bination with our second change that we need to introduce: Standard 802.11 MAC
implementations take countermeasures against potential attacks if too many MIC
mismatches occur, which we also had to disable. This again shows that the results
presented in this section are not supposed to support the idea that the presented
setup provides a feasible combination of robust error tolerance and high security, and
should be deployed. Rather, it gives a more general insight into the influences of
encryption on error tolerance. The specific problems of this implementation are not
fundamental; they are rather effects of 802.11’s flawed implementation of security
features. Robust and (for their respective times) secure stream cipher algorithms
have been deployed in mobile communications networks for many years (for exam-
ple, GSM and UMTS [3GPP03,3GPP09]) and continue to be specified and used (for
example, LTE [3GPP06,3GPP11]).26

Coming back to the evaluation results, we will first have a look at the amount
of degradation that an encrypted stream introduces into Refector’s error tolerance
scheme as opposed to an unencrypted stream. Figure 3.10 shows that at low and
medium delivery rates, there is a noticeable degradation of up to 40%. This strong

26While GSM’s A5/1 and especially A5/2 ciphers are often given as examples of insufficiently
secure encryptions even for their time, this is less a problem of the algorithms themselves, but
chiefly due to the limited key size used for political reasons [Sch96, p. 389].

70 3. Refector: Protocol-Specific Heuristic Header Error Recovery

20%

30%

40%

50%

60%

70%

80%

90%

99%

20% 30% 40% 50% 60% 70% 80% 90% 99%

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

te
 R

e
fe

c
to

r

Packet Delivery Rate UDP-Lite

0%

20%

40%

60%

average

re
l.
 i
m

p
ro

v
e

m
e

n
t

Figure 3.11 Comparison of UDP-Lite and Refector when (TKIP/RC4) encryption is used.
The results are directly comparable to those in Figure 3.7. While there is more diversity
and scattering in the results, the general trend remains the same: Refector virtually always
outperforms UDP-Lite, with an average relative improvement of about 22% in our experiment
series.

degradation is chiefly due to the fact that TKIP uses per-frame keys, created from
the main encryption key via so-called Initialization Vectors (IVs). The 32-bit IVs
are sent with their respective frames, and any bit error in them renders decryption
impossible. Therefore, at high error rates, many frames are unrecoverable due to
bit errors in the IVs. With high quality connections, IVs are much more rarely cor-
rupted, and so the effect is not as pronounced. In fact, at high PDRs of above 95%,
degradation and improvement occur in almost equal shares, a result that is reflected
in the low average degradation of only 3% of the encrypted channel compared to
the unencrypted one over all our experiments. At such high PDRs, the BER is low
enough that the low number of occurrences of errors in the 32-bit IV are negligible
compared to errors that occur in the vital IP and UDP header fields (comprising
104 bits) and might or might not be recoverable. This is encouraging, because it
means that, on average, encryption (at least of such a type, which sends IVs to
create per-frame keys) is less of a problem at high channel qualities, the case that
we already established is especially interesting for error tolerance.

Finally, we will investigate the respective effects of encryption on UDP-Lite and
Refector. Figure 3.11 shows the results of this evaluation. Evaluation setup and
result aggregation are directly comparable to the results from Figure 3.7, with only
the addition of encryption as difference. The results show more scattering and less
homogeneity in the results. This is due to the effect of unrecoverable errors in the IV

3.2. Refector for Stateless Protocols 71

as described above. While this leads to more diverse relative improvement values,
the average improvement is similar and only somewhat reduced due to the IV effect,
and a slightly different distribution in results across the range of PDRs. Again, it
should be noted, just as in Section 3.2.4.3, that the average relative improvement
can be easily skewed by the distribution of results across the PDR range, and can
only give a rough estimate of general performance.

3.2.4.6 Performance

Refector’s heuristic packet matching algorithm indubitably introduces additional
computational overhead into the packet handling routines of the network stack.
This overhead can be roughly categorized by the following thought experiment:

If a packet arrives without any errors, Refector does not introduce any additional
overhead, because the heuristic error tolerance routines are not executed. A correct
packet is handled exactly the same after the introduction of Refector. If a corrupted
packet arrives, Refector’s routines produce a linear instead of a static overhead:
under normal circumstances, a lookup for the one or several of the parameters desti-
nation port, source port, destination IP address, source IP address are done. These
lookups are typically (for example, in the Linux kernel) done on a hash map, which
produces a constant lookup time. In contrast, if no perfect match is found, Refec-
tor needs to traverse the list of currently open connections one by one and match
each connection’s parameters against the received values, which produces a linear
overhead. The actual matching can be done very efficiently by one of the various
algorithms available to count Hamming distances between bit fields [War07], espe-
cially considering that most fields were categorized as don’t-care and only a small
amount of bits need to be compared.

The overhead can therefore be calculated as O(PER · n · H), with PER being
the packet error rate, n the number of open connections and H the overhead of
computing the Hamming distance: whenever a corrupted packet is received, the
Hamming distance calculation has to be done for all open connections. With H
being a constant factor and PER being a value between 0 and 1, we arrive at a linear
complexity of O(n). To estimate n, we monitored the number of open connections
during normal computer usage by several computer science students specializing in
communication systems.27 Results were typically in the range of approximately 25–
35 concurrent connections, rarely reaching 50–60, never increasing above the 100
connection mark.

Finally, packet processing on today’s end hosts, even at high speeds, produces only
negligible overhead to start with. Consequently, when we deployed Refector on
our test machines, we did not notice the computation overhead nor were we able
to measure it. While our experiments only explored 802.11a/b/g data rates up to
54 Mbit/s, this suggests that even fully utilizing the higher data rates provided by
802.11n/ac should produce no performance problems.

27It stands to reason that their use of network communications is at least as intensive as an
average user’s.

72 3. Refector: Protocol-Specific Heuristic Header Error Recovery

3.2.5 Summary

From these results, we can see that Refector is an effective tool that reduces packet
loss under challenging conditions. Even in direct comparison to UDP-Lite, which
already introduces payload error tolerance, we saw an average improvement of 27%
in our experiments. We did not compare ourselves directly to UDP because of
the problems in comparing the two approaches, specifically because UDP, while
it does not give any reliability guarantees that data arrives at all, when it does,
it is guaranteed to be error-free (disregarding error that are not recognized by the
checksum). However, if we ignore this fact, Refector can produce immense reductions
in packet loss, especially with larger packets, which we showed in Figure 3.6.

The largest problem of heuristic header error recovery – misattribution – can be
shown to be of minimal consequence, with misattributions only occurring exceed-
ingly rarely until BER is in excess of 10−2. Furthermore, even encryption does not
completely rule out the use of error tolerance. Depending on the used cipher type
and mode, heuristic error recovery can still be effective. In our experiments using a
standard 802.11 encryption, we could see that, while packet loss increases somewhat,
the relative improvement of Refector over UDP-Lite is roughly equal to the unen-
crypted case. While these results are somewhat tentative, they show that encryption
in itself does not pose an unsurmountable problem to error tolerance. Finally, we
gave insight into the computational overhead of Refector when added to a network
stack, and argued that it is negligible, an argument that was confirmed by our inabil-
ity to measure any significant difference between a normal and a Refector-enabled
network stack’s runtime performance.

3.3 Use Case: Refector-ISCD

Most of the evaluation presented in this dissertation focuses on connection- and
heuristics-related metrics, such as packet loss and misattribution rates. These have
the advantage that they are easily comparable and independent of the used appli-
cations.28 Since the improvements are independent from these factors, focusing on
those metrics keeps our results clear and focused.

However, since one motivation for this work is support for media codecs, it stands to
reason that at least some investigation should be done into the effect that heuristic
header error tolerance has on the perceived quality of those types of transmissions,
and whether Refector can indeed improve quality, and if so, by how much.

For this investigation, we focused on a special group of media codecs using so-called
Iterative Source–Channel Decoding (ISCD). The codec for this investigation was
developed at the Institute of Communication Systems and Data Processing (IND)
at RWTH Aachen University, and the combination of Refector with ISCD was part
of a joint work with Tobias Breddermann from that institute.

28And in many cases, though not in the previously presented evaluation, are also independent
of the underlying MAC and PHY.

3.3. Use Case: Refector-ISCD 73

We will first give a very short introduction into ISCD and the concept of soft infor-
mation. Since this is an entire field of research in itself, we will only provide as much
information as is necessary to understand our approach and evaluation, and refer to
the literature quoted in the following for further information. After this introduc-
tion, we will present results from the combination of Refector with ISCD and show
what quality improvements can be reached by employing Refector. Conversely, we
will also show how direct access to PHY decoder output, in the form of so-called
soft information, can improve Refector’s recovery mechanisms.

3.3.1 Introduction to ISCD

ISCD [Gör00,ACS08] is a special use case of the turbo coding [BG96] principle. In
turbo codes, instead of one coder/decoder (codec) pair, with the encoder residing
at the sender’s and the decoder at the receiver’s side, two codec pairs are employed.
At the receiver, the output of the first decoder is used as (part of) the input of the
second decoder, and vice versa.29 Via several iterations of this process, traversing
each decoder multiple times, the decoding quality can be significantly increased by
approaching the Shannon limit much closer than other codes of the era.

ISCD changes this standard use case of two codec pairs on the physical layer as a
combined channel codec, to a scheme where one codec is used as physical layer codec,
and the other as so-called source codec, encoding and decoding the source material,
that is, the media payload. The source codec plays a vital role in this scenario,
because not only does it encode the payload, it also is in charge of adapting to
potential channel effects, a job that is typically done by the channel coder. In ISCD,
the channel coder is kept at a fixed rate of 1, that is, no redundancy at all, which
is typically a very subpar choice for a channel codec. However, in this special case,
the combination of rate-1 channel code, an adaptive source code, and a specially
crafted interleaver that evenly distributes information over all bits in the packet, a
further improvement can be realized [AVC05], approaching the Shannon limit even
closer (given enough iterations between source and channel coder).

The two decoders iteratively exchange so-called soft information: Upon frame re-
ception, the demodulator transforms the physical symbols not into bits, but instead
into bit probabilities (that is, how likely this bit is to be a 0 or a 1) in the form of
log-likelihood ratios:

L(x|~z) = ln
P (x = 1|~z)

P (x = −1|~z)
(3.3)

where x denotes a bit in bipolar notation (that is, 1 denotes a 0 and −1 denotes a 1)
and ~z = (z(1) . . . z(n)) the received frame of length n bits. The sign x̂ = sgn(L(x|~z))
denotes the hard decision output (whether the bit should be considered 0 or 1 at
this point), and the magnitude |L(x|~z)| the reliability of this decision. The goal
of iterative decoding is to steadily increase the magnitude of each soft value, until
correct decoding is achieved to a high degree of probability.

29This behavior is the origin of the term “turbo code”. Like in a turbocharged motor, where the
exhaust pressure is used to produce additional air intake into the motor, a turbo decoder uses the
output of one decoder to feed into the other decoder [BG96,HOP96].

74 3. Refector: Protocol-Specific Heuristic Header Error Recovery

Source
Encoder

FEC π UDP IP
Channel
Encoder

π
Modu-
lation

Channel

Demodu-
lation

π−1
Channel
Decoder

Refector
IP

Refector
UDP

Assign
Packet

π−1

π

Source
Decoder

Sender

Receiver

Figure 3.12 ISCD transceiver system. In a circuit-switched setup, Channel (PHY) and Source
(APP) decoder are directly connected (light gray boxes only). In a packet-switched network,
transport and network layer need to be traversed, and the packet needs to be assigned to the
correct application (dark gray boxes).

The main problem with ISCD in our case is that it was not designed with packet-
switched networks in mind, but rather for systems in which the receiver always
knows what application a packet is destined for, like it is the case in circuit-switched
networks with dedicated connections, or in systems that multiplex and demultiplex
connections on the physical layer due to time slots (TDMA), dedicated frequencies
(FDMA), or combinations thereof. In fact, ISCD performs very poorly in packet-
switched networks. This is because the iteration step that improves decoding quality
can only begin once the packet has traversed the network stack and we know which
application a packet belongs to, and hence which source decoder should work in
tandem with the channel decoder. However, the initial output of the channel decoder
is of quite poor quality because of its use of a rate-1 codec which is very susceptible to
errors during transmission. This means that the packet has to traverse the network
stack while potentially containing many bit errors (in payload and headers, but only
the latter is of consequence at this point), leading to a high packet drop rate before
ISCD ever has the chance to produce high-quality decoding.

The overall ISCD setup is shown in Figure 3.12, with the sender side at the top and
the receiver side at the bottom. The network stack is added between source and
channel coder. In a circuit-switched ISCD setup, the receiver’s side is set up so that
channel and source decoder can directly interface with each other, separated only
by the interleaver π or the deinterleaver π−1 which translate between the expected
bit layouts. In a packet-switched network, the packet has to be assigned before the
source decoder is found and can start iterations with the channel decoder. Note that
the network stack only has to be traversed once to find the correct source decoder;
the dashed arrows denote that the channel decoder is informed of the source decoder
it may interface with in future iterations, and can afterwards circumvent the network
stack.

3.3. Use Case: Refector-ISCD 75

Refector therefore is a natural choice to allow usage of ISCD in packet-switched
networks: by being able to find the correct application a packet belongs to, even
under header errors, we can employ the efficient ISCD decoding scheme in such
networks. Conversely, ISCD’s channel decoder provides Refector with per-bit soft-
information. We will also see how this soft information increases the assignment
rate of Refector, by allowing more packets to be assigned correctly.

3.3.2 Experimental Setup

To evaluate the effects of the combination of Refector with ISCD, we used a custom
simulation setup. The main reason for this approach is that the ISCD implemen-
tation available to us was developed as a simulation model for a custom simulator
used at IND. This simulator comprises both the source and channel decoders, as
well as a channel model applying Additive White Gaussian Noise (AWGN) onto the
simulated PHY symbols, in one monolithic block. There were no provisions for a
packet-switched system and its network stack.

We decided to split this monolithic simulation into three functional blocks: source
(de)coder, channel (de)coder, and channel model. These blocks were then encapsu-
lated as stand-alone simulation models for the ns-3 [LH06,HRFR06,ns3] simulator.
The decision to use ns-3 is motivated by its packet modeling. As opposed to many
other network simulators such as OMNeT++, where packets are modeled in an ab-
stract fashion as data structures of the used programming language, ns-3 uses a
byte-by-byte exact representation of packets and headers as they would be used in
a real system.30 This type of modeling allowed an easy interfacing with the channel
(de)coder by inserting packets into it and receiving (corrupted) packets out of it.
Furthermore, due to this packet representation, the network stack model of ns-3
closely matches the Linux kernel’s implementation compared to other simulators,
which made it easy to transfer Refector concepts between the two implementations.

The metric for our experiments was speech quality. For different channel qualities, we
sent speech samples from the ITU-T standardized voice sample collection [ITU01],
compressed with the GSM AMR [ETSI00] codec at 12.2 kbit/s, which, with payload
FEC by the application decoder, produced 97 bytes of payload at a sending rate
of 50 frames/s (one packet every 20 ms). Speech quality was measured by Mean
Opinion Scores (MOSs), using the standardized Perceptual Evaluation of Speech
Quality (PESQ) tool [ITU01] for synthetic and objective speech quality values in the
range from 4 (good) to 1 (poor). As a baseline setup to compare against, we used the
circuit-switched setup, in which the speech data is sent without any headers over a
dedicated link; this was done by simply running the original simulation stand-alone.
We investigated the performance by changing the channel quality in increments of
0.1 dB and repeating experiments 20 times for each such data point. Error barrs

30The trade-off here is generally that an abstract modeling of packets is more generalizable to
approaches that use different types of messages that do not fit the packet paradigm well. Conversely,
ns-3 was designed to support network emulation, that is, interfacing a simulation with real systems,
in which case the simulation needs to create and receive “real” packets, and therefore chose this
exact representation of packets.

76 3. Refector: Protocol-Specific Heuristic Header Error Recovery

denote 95% confidence intervals. The original stand-alone simulation, however, did
not create any noticeable variance, so we will refrain from showing error bars for
it. The number of ISCD iterations between source and channel decoder before
evaluating the resulting speech quality was set to 6 in the experiments. Cursory
tests at other iteration numbers showed the same relative behavior between the
different approaches presented in the following, so we expect the iteration number
to not have any significant influence on the validity of our results.

Finally, the ISCD simulator was not designed for being run in parallel; in fact,
the code does not even allow to run several completely separate instances on the
same system. Hence, not only could we only use one ISCD connection in each
experiment, the channel model also only allowed data from this ISCD connection to
pass through. Since only having one connection does not adequately model a packet-
switched network, we used a different approach to model concurrent connections.
We set thresholds in our Refector implementation for IP address and port fields.
If the received data for those fields differed from the correct data by more than a
preset number of bits, the packet would be dropped. This distance modeled other
concurrent connections that, due to the high error rate, would have “caught” the
packet due to misattribution. Since this only models one direction of misattribution
(own packets being lost to other connections, not foreign packets captured from
other connections), we set these to be more stricter. For example, we presented a
solution in Section 3.2.2.3 that guarantees a minimum Hamming distance between
ports of 5 (unless a large number of ports is used concurrently); consequently, we
set the threshold in our experiments so that any Hamming distance of 3 or greater
would result in a packet drop, which is stricter, because no port has ever all distances
of 3 resulting in a misattribution (cf. Section 3.2.2.3).

3.3.3 Packet-Switched ISCD

Figure 3.13 shows the results from our investigation. Several results are immediately
apparent. First, none of our approaches, which we will describe and explain in
detail in the following, performs better than the baseline circuit-switched ISCD.
This, however, is expected. Note that channel quality is measured in signal-to-noise
ratio per information bit (Eb/N0), therefore abstracting from factors such as per-
symbol transmission energy compared to per-symbol SNR (Es/N0). “Information
bits” in this respect mean the raw voice data before any encoding. In the circuit-
switched approach, this abstracts from code rate effects: for example, a rate 1/2
code introduces a bit of redundancy for every information bit; however, at the same
Eb/N0, each of these coded bits can then only use half the transmission energy to
be sent. In our packet-switched approaches, however, header bits also need to be
sent, and are not classified as information bits. Hence, we immediately have less
energy budget per bit we need to transmit (header plus payload) than the circuit-
switched version, putting us at a large disadvantage. Overcoming this disadvantage
is near-impossible, though the figure already shows that, given the right cooperation
between Refector and ISCD, we were able to approach the baseline case very closely.
On the other hand, while we never reach the baseline scenario, we provide advantages

3.3. Use Case: Refector-ISCD 77

 1

 1.5

 2

 2.5

 3

 3.5

 4

-2 0 2 4 6 8 10 12 14 16

V
o

ic
e

 Q
u

a
lit

y
 [

M
O

S
-L

Q
O

]

SNR [Eb/N0]

circuit-switched ISCD (baseline)
ISCD-Refector with softinfo+feedback

ISCD-Refector with soft information

ISCD-Refector
ISCD+UDP-Lite

ISCD+UDP

Figure 3.13 Comparison of ISCD in a circuit-switched, headerless scenario to different setups in
packet-switched scenarios. Due to the additional overhead by introducing headers, the circuit-
switched scenario (which assumed all connection control is done out-of-band) outperforms
all packet-switched scenarios, but by different margins. UDP and UDP-Lite both require a
massively improved SNR to provide the same quality (11 dB and 9 dB, respectively). Refector
already performs much better at a degradation of roughly 4 dB. By extending Refector to make
use of the soft information provided by the channel decoder, performance can be improved by
another 2 dB. Finally, by feeding back repaired headers from Refector to the channel decoder,
the degradation can be reduced to roughly 0.5 dB.

that packet-switched networks have over circuit-switched networks: primarily, since
we use a full IPv4 and UDP implementation, we can multiplex different connections
onto the same channel. We also need no out-of-band signaling that is generally
necessary to set up and manage a circuit-switched setup. While this is outside of the
scope of this investigation, by using packet-switched ISCD, this out-of-band overhead
could be eliminated, further increasing its performance compared to circuit-switched
ISCD.

Coming back to Figure 3.13, we will first observe the performance of a packet-
switched ISCD without Refector, that is, simply encapsulating ISCD’s voice pay-
load into standard IP/UDP packets and sending them. The results show a massive
degradation of 11 dB. This is because on the receivers side, all bits have to be
correctly decoded on the physical layer by the weak rate-1 channel decoder, which
requires very good channel conditions. Otherwise, the packet will be dropped due
to checksum mismatches. This effectively renders ISCD useless: either the packet
gets dropped, or it is already perfectly decoded after the initial channel decoding
step, and no iteration can lead to further improvement.

Next, we replaced UDP with UDP-Lite as transport-layer protocol, setting the check-
sum coverage to the minimum of only covering its own header. This already leads
to a significant improvement of 2 dB, but the degradation is still extremely severe at

78 3. Refector: Protocol-Specific Heuristic Header Error Recovery

9 dB compared to the baseline case. The improvements are due to the decrease in
packet losses. Still, any packet containing bit errors in the IP and UDP-Lite head-
ers after the initial channel decoding stage are dropped, leading to a strong quality
degradation.

From these results, we can conclude that standard approaches to packetizing ISCD
streams are impractical.

3.3.4 Refector-ISCD

We next combined ISCD with Refector. At this point, checksum mismatches do
not lead to packet drops any more. Only drops due to not being able to correctly
repair packets occur at this stage. This immediately leads to a large performance
improvement of 5 dB over UDP-Lite and 7 dB over UDP. Still, to reach the same
voice quality as the circuit-switched setup, 4 dB more energy has to be expended:
this shows the burden of the additional overhead introduced by the packet headers.

However, we can improve Refector in a way that was not possible in our WLAN
scenario. Since ISCD is a soft-information coding system, the output of the channel
(and, less relevantly, source) decoders is per-bit soft information as described in
Section 3.3.1. This gives us much more detailed information about the state of
potentially broken bits. The per-bit log-likelihood ratio (cf. Equation 3.3) denotes
the confidence that the bit is a 0 (or a 1). We can use this additional information
to Refector’s advantage. Consider the following example: For the destination port,
we tolerate at most two bit errors, that is, require a Hamming distance of 2 or less.
The decoding leads to a distance of 3. However, the soft information indicates that
all the matching bits are correct with a high probability, while the non-matching
ones are of low confidence.

To leverage this information, we calculate a reliability metric over the bit field
(x1, . . . , xn), xi ∈ {−1, 1} in bipolar notation:

n∑

i=1

xi · L(xi)

This produces a number that increases with the reliability of the match. We then
accept packets for an application if the reliability of the match is above a minimum
threshold. Thus, we further increase the amount of packets that can be identified
and handed over to the application, increasing the voice quality at the receiver’s end.
Figure 3.13 shows that this process improves the performance of ISCD by a further
2 dB. The large reduction compared to the standard (“hard information”) Refector
might seem surprising, but the reasons for this are twofold: First, packet loss has a
very large negative influence on the quality of the AMR speech decoder. Second, the
rate-1 channel decoder produces results that are so error-prone that packet drops
occurred in almost every experiment, leading to said lost packets which did not
reach the application. By using the available soft information, packet drops could
be reduced to almost 0.

3.3. Use Case: Refector-ISCD 79

However, there is further room for improvement. Remember that the interleaver
spreads information of each bit over several (in the theoretical optimum, all) physical
layer symbols. Conversely, if some bit information can be recovered, it will positively
influence the decoding quality of the other bits it was encoded with. The interleaver
will, during its work, interleave header and payload bits to have the two groups
share symbols with each other. Furthermore, after we traverse the network stack,
we have an understanding of the correct contents of several header fields: those that
are vital (and had to be repaired) and those that are static over all connections.
We can therefore set the log-likelihood values of these bits to the maximum values
L(x) = +∞ or L(x) = −∞. We then feed back these values to the physical layer
decoder. In the following iterative decoding process, these values derived from header
fields will boost the decoding of the payload bits, improving the voice quality. This
boosts the following iterative decoding process between source and channel decoder
and leads to an improvement in voice quality. Note that this feedback needs to be
done only once: once the relevant header bits are set to maximum log-likelihood
values, there is no benefit in feeding back information between Refector and channel
or source decoder. This is denoted in Figure 3.12 by the two dashed arrows: when the
packet assignment stage is reached, information is fed back to the channel decoder
once. From then on, instead of progressing to the Refector IP implementation, the
channel decoder interfaces with the deinterleaver (π−1), setting up the standard
iterative source–channel decoding loop. We showed the theoretical upper bounds
of this in [BLV+10]. Figure 3.13 show that in a more practical setup, we can also
benefit greatly from this feedback. A combination of Refector and ISCD, with
Refector exploiting soft information and feeding back maximum log-likelihood values
for (potentially repaired) header fields, almost reaches the performance of a circuit-
switched ISCD setup, despite transmitting additional information in the form of
headers over the channel at the same energy budget.

3.3.5 Summary

This use case, and the results from it, give us two important insights. First, while
connection-oriented metrics, such as number of recovered packets and misattributed
packets, strongly suggest performance improvements for error-tolerant applications,
we showed in this section by example that this is indeed the case: Refector produces
a significant quality increase for error-tolerant transmissions compared to other so-
lutions (such as a standard UDP-based setup, or UDP-Lite), all other conditions
being equal.

Second, Refector can, in turn, benefit from rich information provided by channel
decoders. We showed that an extended version of Refector that replaces Hamming
distance matches with a weighed metric that takes bit probabilities into account can
further improve Refector’s accuracy and consequently quality for media applications.

With these two questions answered, we will, for the rest of this dissertation, again
focus on connection-related metrics due to their higher degree of abstraction and
independence from specific application scenarios. While promising, we will also
forego the benefits of soft information for assignment decisions in the following.

80 3. Refector: Protocol-Specific Heuristic Header Error Recovery

This decision is based on the fact that consumer hardware does not provide such
rich information to the software, and therefore, for all its benefits, is not a realistic
source of information for our envisioned use case and contradicts our design goals
of easy deployment. Nevertheless, we consider the interaction between soft infor-
mation and heuristic header error recovery a promising field that might warrant
further investigation at a future point, especially if soft information becomes a more
mainstream solution also found in consumer hardware.

3.4 Refector for Stateful Protocols

In the previous sections, we have shown a feasible and effective design and imple-
mentation for header error tolerance in some protocols. The protocols investigated
there (IP and UDP) share the property that they do not carry a state: each received
packet is, in effect, independent from packets received before and after it (with the
exception of fragments due to IP-level fragmentation, which is not used in practice).
However, many communication protocols have a state that is communicated via the
packets that are sent. A typical example for a stateful protocol that is used with
media streaming and hence could benefit from error tolerance is RTP. In this sec-
tion, we will explore the concept of error tolerance for stateful protocols using the
RTP [SCFJ03] as an example.

3.4.1 The Real-Time Transport Protocol

The Real-Time Transport Protocol (RTP) was designed to support the transmission
of streaming content. It is an application-layer protocol, that is, it is used on top
of IP and UDP. While it is possible to also combine it with TCP, this is typically
not done due to the conceptual design of RTP. The protocol’s idea is to provide
certain desirable traits (ordering and timing information) that are absent from UDP
without introducing the overhead that a TCP connection incurs for properties that
are not considered important for streaming (reliability through acknowledgments
and retransmissions, flow and congestion control). The reasoning is that reliability
is not considered important enough to warrant the considerable overhead: keep-
ing track of sequence numbers and receive windows, and acknowledging all received
packets complicates protocol behavior significantly; in addition, the time-critical na-
ture of streaming data makes retransmissions problematic if the information arrives
too late to be useful. This argumentation follows the same reasoning as the one
we base our motivation for error-tolerance on. On the other hand, ordering and
timing information is considered important to give the decoder of the stream the
information when to play which part of the received data to produce a coherent
output. Instead of acknowledgments, RTP is typically used in combination with a
control stream using the RTP Control Protocol (RTCP), which, in regular intervals,
sends so-called reports that feed back information such as packet loss and jitter, to
which the participants then can try to react, for example, by choosing a more robust
media coding scheme or different bit rates (if packet loss was due to exceeding the

3.4. Refector for Stateful Protocols 81

0 2 3 4 8 9 16 31

V P X CC M PT sequence number

timestamp

synchronization source (SSRC) identifier

contributing source (CSRC) identifiers

...

extension header

...

Figure 3.14 Contents of a Real-Time Transport Protocol (RTP) header. Names in italic script
denote optional fields. V: version; P: padding; X: extension; CC: CSRC count; M: marker; PT:
payload type.

available bandwidth). Due to the low volume of RTCP compared to RTP, and since
we consider this control information more important and less error-tolerant than the
media data itself (with errors in the packet loss and jitter information, for example,
potentially leading to erroneous adaptations), we will not present an error-tolerance
scheme for RTCP and instead focus on RTP.

The RTP header layout is shown in Figure 3.14. We will quickly explain some of the
more basic header fields and flags and then discuss those that contain information
about some fundamental concepts of RTP in more detail. The version (V) field,
in the same way as the field of the same name in the IP header, contains a value
that denotes the protocol version. The padding (P) flag denotes whether the packet
was padded at the end. If padding is used, the amount of padding is denoted by
writing its length into the padding itself. The extension (X) flag denotes whether
an extension header is present, which allows to add additional information to the
header by extending it. Again, if such a header is present, its type and length are
contained in the extension header itself. The marker (M) flag can be used to mark
certain packets. The meaning of this marking is specific to the payload type.

The payload type (PT) contains an identifier that identifies which codec (and op-
tionally codec parameters) should be used to decode the stream. This list is pre-
specified, in a manner similar to IP protocol numbers [IANA15]. Like this list,
the list of payload types is administered by Internet Assigned Numbers Author-
ity (IANA) [IANA14] as per RFC 3551 [SC03]. Note that while it is possible to
thus multiplex different types of media over the same RTP connection (e.g., multi-
plexing the video and audio stream of a video conference setup by sending the two
logical streams with different payload types over the same RTP connection), the
standard actively discourages this setup and strongly suggests using separate RTP
connections (i.e., to different receiver ports) for multiplexing.

Sequence number and timestamp give information about the order of packets. The
sequence number allows to recognize packet loss and reordering, while the timestamp
gives information about when data contained in this packet should be played back
relative to other received data.

82 3. Refector: Protocol-Specific Heuristic Header Error Recovery

The Synchronization Source Identifier (SSRC) and Contributing Source Identifier
(CSRC) are used to identify the source of the stream. Each RTP stream has exactly
one SSRC that identifies the source, and is randomly chosen to reduce the chance
of collisions between SSRCs of independent streams. If an intermediator modifies
or aggregates streams, it updates the SSRC and adds each input stream’s SSRC
as CSRC. For example, during a conference call, a central aggregator could mix
all streams and then add each caller’s SSRC as CSRC to each aggregated output
packet. The number of CSRCs in the header is encoded in the CRSC Count (CC)
field. In general, the CSRCs of a stream stay largely static, with no CSRCs at all in
the basic scenario of a one-to-one VoIP connection, and a static number of CSRCs
in the presence of a mixer, which only changes when callers join or leave.

3.4.2 Header Fields Categorization

With this information in mind, we can now categorize RTP’s header fields in a
similar fashion to the way we did with IP’s and UDP’s in Section 3.2.1. There are,
however, two vital differences between RTP on one side and IP/UDP on the other.
First, the concept of identifying the right stream is different. Since by the time the
packet reaches the RTP handler, it can be assumed to belong to that connection
(disregarding very rare cases of misattribution resulting from using Refector on the
lower layers), so the stream identification problem is much diminished. Only if there
are two or more logical streams (identified by different SSRCs) that are multiplexed
within one RTP connection,31 misattribution can occur at all, and then also only
between this (typically) low number of multiplexed streams. Second, RTP contains
header fields that are not static over the course of the connection, but rather change
from packet to packet and convey information about the content in each packet.
Following this reasoning, we refrain from categorizing header fields into “vital” and
“don’t-care” fields; the only field considered vital for stream identification would be
the SSRC field. Instead, we consider fields to either be static, predictably dynamic
or unpredictably dynamic, and investigate ways of reconstructing dynamic header
fields in case of corruption.

Static fields are fields that can be expected to not change during the lifetime of
an RTP stream. They are either the same for every RTP stream or specific, but
unchanging, for each specific stream. These do not pose any special problem to
repair, because repair techniques can simply follow the same ones laid out in the
case of stateless protocols in Section 3.2.

Predictably dynamic fields are fields that are expected to change from packet to
packet, but in a pattern that allows inferring future field contents from investigation
of previous contents of those fields. Thus, in a corrupted packet, such fields are
repaired by inferring the value from previously learned contents in uncorrupted
packets.

31For the remainder of this section, the terms stream and connection will be used to distin-
guish between one or several logical streams, denoted by their SSRCs, multiplexed into one RTP
connection that matches a socket connection via lower-layer protocols.

3.4. Refector for Stateful Protocols 83

0 2 3 4 8 9 16 31

V P X CC M PT sequence number

timestamp

synchronization source (SSRC) identifier

contributing source (CSRC) identifiers

...

extension header

...

Figure 3.15 The same RTP header as in Figure 3.14, but with fields colored according to
the recoverability via our heuristic header recovery scheme: white denotes static fields, light
gray predictably dynamic fields, and dark gray unpredictably dynamic fields. Most fields are
recoverable; even those that are categorized as unrecoverable are salvageable in some circum-
stances.

Unpredictably dynamics fields are fields that might or might not change from packet
to packet, even within the same stream, and without any possibility to infer future
field contents from previous contents.

We will now discuss the categorization of each header field in detail. Figure 3.15
visualizes this categorization.

The version field works the same as in the IP header. Its job is to identify the
version of the RTP protocol. As there is only one standardized version of the RTP
protocol, identified by the number 2, this field has to contain the static bit pattern
10 in every RTP packet.

The padding (P) field denotes whether the packet has been padded by the RTP
instance on the sender’s side. This field cannot be easily predicted, at least if RTP
tries to enforce fixed packet sizes while the payload data created by the codec is not
of static size. In that case, the padding value might change from packet to packet
in an erratic fashion, making the field unpredictably dynamic. However, this use
case (dynamic rate codecs producing variable size output combined with enforced
padding to create uniform packet sizes) is rather exotic; in most cases, there is no
reason for RTP to pad the packet, because lower-layer protocols will know better
whether there are compelling reasons to pad the packet (e.g., padding Ethernet
frames to the minimum frame size required for correct functioning of Ethernet).
Thus, assuming that this field is 0 can be considered a good educated guess; while
not currently implemented in our solution, watching the padding field in all correct
packets and statically setting it to 0 if no other value was ever seen is a reasonably
safe solution, especially considering that even if padding is present and by mistake
not removed from the packet prior to handing the payload over to the codec, the
results will be codec-dependent and might not have any negative results whatsoever.

The extension field denotes the existence of an extension header. If the field is set
to 1, then an extension header follows the main RTP header. Vital information,
such as the length of that extension header and whether a second extension header

84 3. Refector: Protocol-Specific Heuristic Header Error Recovery

will follow, is contained within that first extension header. In many ways, the field
behaves like the padding field with respect to predictability and repairability. While
extension headers might only be present in some packets and there might not be
a way to predict from previous packets whether the next one will contain such
an extension, these extensions are exceedingly rare in practice. In fact, the RFC
[SCFJ03] actively discourages the use of extension headers due to their overhead,
and most popular predefined audio and video payload types (e.g., G7xx [Cas07],
AMR [SWLX07], H.264 [WEKJ11]) do not define any extension headers. With the
same reasoning as in the padding case, we therefore argue that, when in doubt,
repairing the field to 0 is a reasonable choice, though not by all means perfect.

The CSRC count (CC) field denotes the number of 32-bit CSRC records present in
the header. As described above, the number of CSRCs is expected to change very
rarely over the course of a connection, if at all. It is therefore possible to learn
the content of the CC field by monitoring its contents in previous packets: for each
SSRC (if there are even more than one present within one RTP connection), the CC
can be heuristically repaired by setting to the last value seen before.

The marker (M) bit is, in the words of the RFC, “intended to allow significant events
[...] to be marked in the packet stream” [SCFJ03]. How to exactly define the concept
of a significant event is at the liberty of the payload type used. For example, codecs
that do not send data continuously, but only if significant data is available (e.g.,
talkspurts in voice codecs) can use this field to denote the first frame after a silence
period; video codecs that send frames larger than the maximum packet size can
denote the start of a frame in a packet. Due to the diversity and unpredictability of
this field, we consider it unpredictably dynamic.

The payload type (PT) field denotes the profile, that is, the type of content within
the payload of the RTP packet and the codec to be used to decode it. As described
above, this field is not expected to change over the course of a stream: for each
SSRC, this field is static and therefore is learned after seeing the first uncorrupted
packet for a stream.

The sequence number identifies the order of packets. It is incremented by 1 with ev-
ery packet sent. As such, it is the prime example of a predictably dynamic field: once
we have seen one packet, we can predict the value for all future packets, provided
there is no reordering of the corrupted packets. However, we consider this a rea-
sonable assumption: while packet reordering does happen in Internet connections,
it seems to show bursty tendencies, with most connections only showing numbers of
reordering evens [ZvM04]. Furthermore, reordering is most prevalent when bursts
of packets are sent and tends to occur more often as packet sizes increase [PBB05].
However, at least for audio streams, we can expect to not have any burst behavior,
but, in fact, pauses between individual packets. Since audio data is comparably
small, there is no need to send large amounts of data spanning several packets at
the same time; thus, audio packets are sent at regular intervals (e.g., every 20 ms)
to satisfy end-to-end latency requirements [ETSI06, ITU03].

The timestamp field contains the time (in a unit predefined in the payload type)
at which the contents of a packet should be played at the receiver. At least for

3.4. Refector for Stateful Protocols 85

DBLearner Predictor

Incoming Packets

Main RTP routines

store lookup

forward repair & forward

correct corrupt

Figure 3.16 Packet flow through the extended RTP library. Correct packets will be inspected
by the learner, their contents saved to a simple database, effectively a list of entries indexed by
SSRCs, and forwarded to the main RTP processing routines. Conversely, corrupted packets will
be passed to the predictor, matched against expected header field values for ongoing streams,
repaired to match the best stream, and afterwards forwarded.

audio streams, this field will increase predictably due to the aforementioned regular
intervals between packets.32 The timestamp is then tightly coupled to the sequence
number: for every increase in the sequence number, the timestamp increases by a
static value. Thus, the timestamp field is also predictably dynamic, at least in audio
applications.

As described above, the SSRC is not expected to change over the lifetime of a stream,
and is thus static.

The CSRCs can change over time, but as pointed out above, they are expected to
do so very rarely, if ever. As such, they could be considered static; however, a better
choice is to consider them predictably dynamic and assume that, in a corrupted
packet, the CSRCs are the same as in the last uncorrupted packet. This covers the
wider range of rarely changing CSRCs reliably, without preventing occasional CSRC
changes.

3.4.3 Stream Identification: The Learner–Predictor Scheme

The previous sections already hinted at the fact that, to properly support the repair
of predictably dynamic fields, we need some way to learn packet contents and then
apply this information to corrupted packets. This information can then be saved in
a very simple database. Since an RTP connection can encompass several streams,
and these streams are identified by their SSRC, this field will act as the primary key
of our database. A conceptual diagram of the behavior is shown in Figure 3.16.

Whenever a correct packet arrives,33 its header fields are read and information saved
to the database by the learner unit. Static fields only need to be saved once, because

32In video streams, several packets with the same timestamp, but increasing sequence numbers,
might arrive, due some frames containing too much data to fit into one packet.

33We will discuss how to identify error-free RTP packets in Section 3.4.4.

86 3. Refector: Protocol-Specific Heuristic Header Error Recovery

they never change afterwards. The way predictably dynamic fields are saved depends
on their type: CC and CSRCs are always saved to the database, to keep the last
seen contents of those fields. sequence number and timestamp are also saved. In
addition, a stepping factor is saved, which calculated by

tsthis − tslast

seqthis − seqlast

where tsthis denotes the timestamp of the current packet, tslast the timestamp of
the last previously correctly received packet, and seqthis and seqlast the sequence
numbers, respectively.34 Finally, unpredictably dynamic field contents are not saved,
because they do not aid in reconstruction of corrupted packets.

Whenever a corrupt packet arrives, the predictor unit first tries to look up the
learned information for the SSRC received in the RTP packet. This lookup can
either produce a result immediately, if the SSRC was uncorrupted. If no perfect
match is found, a best match will be found by using the exact same scheme as the
one used by Refector to find matching IP addresses and ports: the SSRC with the
lowest Hamming distance to the received value is used. Once the entry is found, the
predictably dynamic fields will be repaired by the predictor. Mostly static fields,
such as CC and CSRCs, are simply replaced in the packet. The sequence number
and timestamp are repaired by taking the last seen sequence number, incrementing
it by 1, and writing it into the received corrupted packet. Similarly, the timestamp
is repaired by taking the last seen timestamp, incrementing it by the stepping factor,
and writing it into the packet. Finally, the fact that a packet was repaired towards
the values of this stream is saved by incrementing an internal stream-specific counter.
Thus, if another corrupted packet arrives for the same stream, the sequence number
for that packet is repaired by incrementing the saved sequence number value by 2,
and the timestamp by incrementing the saved timestamp by incrementing it by twice
the stepping factor. This continues until a correct packet is received for a stream,
at which point that packet’s sequence number and timestamp will be saved, and the
counter reset to 0. Thus, static and predictably dynamic fields can be repaired.

The main problem with this approach is that is disregards the possibility of losing
RTP packets completely: in this case, sequence number and timestamp are repaired
incorrectly. If a correct packet with a sequence number of n is received, the packet
with sequence number n + 1 is completely lost, and then a corrupted packet that
was sent with sequence number n + 2 is received, the number will incorrectly be
repaired to n + 1. While this sounds like a large problem, note that the resulting
desynchronization is rather light: first, sequence number and time stamp are kept
in lock-step, so no incoherence occurs here; second, as soon as a correct packet
is received, the predictor resynchronizes itself automatically; and third, while a
lost packet will lead to incorrect repairs of every corrupted packet that is received
afterwards until a correct packet is received again, the relative synchronization within
this spurt of incorrectly repaired packet is kept: only at the point of packet loss and
subsequent reception of a correct packet, slight de- and resynchronizations occur.

34The stepping factor is, of course, only calculated if valid values for tslast and seqlast exist, that
is, not for the very first received packet of a stream.

3.4. Refector for Stateful Protocols 87

3.4.4 Implementation for RTP in libortp

To test the feasibility and performance of our concept, we implemented it in an
RTP implementation. We decided to use oRTP 0.16.5 [ortp], a dynamic library
written in C. This library is, for example, used by the linphone [linphone] project.
Our changes are small and self-contained, and so should be easily portable into
other RTP libraries. The only interface of our learner–predictor implementation
with existing library code is the requirement to have access to the RTP headers
early in the processing, to feed the learner and potentially repair the packet via
the predictor. All the necessary changes are contained to the rtpsession_inet.c

file. The learner and predictor both hook into the rtp_session_rtp_recv function,
the wrapper function for the library’s main parsing routines. The database that
contains the per-stream data (e.g., SSRC, payload type, last seen sequence number
and timestamp, stepping factor, counter of incorrect packets since last packet to
calculate the correct sequence number and timestamp) as a linked list of C structs.

The second part that requires integration with existing code concerns the interface
with the operating system’s underlying socket architecture to differentiate between
correct and corrupt packets, a problem we already mentioned in the above section,
but deferred discussing until now. When we focused on IP and UDP earlier, the
difference was easy to recognize because both protocols had a checksum that allowed
to immediately see whether a corruption had occurred. RTP, however, does not
have any checksum: as application-layer protocol, it relies on the integrity checks
implemented by lower layers and refrains from adding another superfluous integrity
check itself. This means that RTP itself does not have an easy way to recognize
whether a packet was corrupted in transit. However, the MSG_HASERRORS flag that
we introduced in Section 3.2.3 and that signals whether a packet potentially contains
errors when using the recvmsg system call solves this exact problem. We simply
need to check its value to decide whether to run the learner or the predictor on a
received packet.

3.4.5 Evaluation

As in the first part of this chapter when we evaluated the performance of Refector
for stateless protocols, we now investigate the behavior of our repair techniques for
stateful protocols. Before we started this evaluation step, we considered the lessons
from the first evaluation setup.

Evaluating Refector as presented in Section 3.2.4, within a kernel implementation,
using commodity WLAN adapters and a testbed of real-world machines, provided
irrefutable evidence for the feasibility of the approach. It also showed that there
were no hidden effects that rendered such a system impossible in practice, due to
unforeseen and unaccounted-for side effects from other protocols, operating system
behavior, or hardware and channel effects.

On the other hand, one large problem that we faced during the evaluation was
that reproducibility of experiments was nearly impossible. Only by careful setups,

88 3. Refector: Protocol-Specific Heuristic Header Error Recovery

by interleaving Refector and UDP-Lite streams, and by very long measuring series
were we able to produce results that provided credibility and soundness. Even then,
environmental effects made it very hard to achieve reproducible results over the
complete investigation range. For example, effects from underlying layers, such as
MAC errors, influenced the results, while being uncontrollable themselves. These
MAC effects also watered down the quantitative results and limited the insight
into how much of an improvement Refector produced for those protocols that it
supported.

For this next step in developing Refector, we therefore decided to use a simula-
tive approach to have more control over environmental factors, and to focus our
investigation onto those parts of the protocol stack that we “refectorize”.

3.4.5.1 Experimental Setup

Our focus in this evaluation is RTP, represented by the oRTP library enhanced
with our heuristic header error repair techniques. Hence, we decided to disre-
gard all factors from lower layers. This can be done reasonably easily due to
the fact that oRTP is a self-contained implementation of RTP. All we need is
a small wrapper program for sending that triggers creation of RTP packets by
the library, and a second such wrapper that receives these packets. The com-
munication between the two can then be done via Unix domain sockets. These
sockets allow inter-process communication by sending and receiving data in the
same way as Internet socket. Changing from one socket type to another only re-
quires trivial changes in the oRTP library that have no effects on the rest of the
code base and its behavior. To do so, we only needed to change the socket types
from Internet sockets to Unix Domain sockets by changing the relevant lines in
the create_and_bind and rtp_session_set_remote_addr_full functions in the
rtpsession_inet.c file. Communication between the two oRTP instances after-
wards behaves exactly as if an Internet connection had been set up before the start
of the communication.

This, however, only produces an error-free, direct channel between the two instances.
Such communication is uninteresting from the view point of error tolerance, since
there are no errors to tolerate and repair. Our first idea was to use netem [netem],
a framework for simple network emulation tasks that is a standard tool in Linux
distributions, to inject bit errors into the communication. However, netem is not
designed for this specific use case. Even though it has the functionality to corrupt
packets with a certain error rate, an error is only provoked by flipping a single bit in
the packet, invalidating the checksum. However, since we are interested in packets
that are potentially strongly corrupted, we need to be able to flip more than a single
bit.

We therefore created a simple application to corrupt the packets ourselves, which
was then inserted between the sender and receiver: instead of the sender directly
connecting to the receiver via a Unix domain socket, it instead connected to the
corruptor, which read data, applied bit errors to the complete packet with a certain

3.4. Refector for Stateful Protocols 89

Sender Corruptor Receiver

. .
. 0

10
11

00
1.

. .

. .
. 1

10
10

01
1.

. .

va
lid

RTP
pa

ck
et

co
rru

pt
RTP

pa
ck

et

Figure 3.17 Diagram visualizing the experimental evaluation setup. Sender and receiver are
two instances of the oRTP library, with the receiver extended with our heuristic header error
recovery mechanisms. They communicate with each other via Unix domain sockets. In between
the two resides the corruptor, which passes through data from the sender to the receiver and
can be instructed to introduce various amounts of errors into the RTP packets.

per-bit probability, and then sent it to the receiver. The setup is depicted in Fig-
ure 3.17. If the corruptor introduced at least one error, it signaled so to the receiver,
emulating a checksum failure on a lower layer and the resulting MSG_HASERRORS flag.

The corruption followed a simple Bernoulli process, modeling a binary symmetric
channel: we set a BER for the experiment, and each bit would then be flipped with
that probability. The effect is that the errors are independently distributed from
each other within the packet. This is a somewhat dangerous assumption; in fact,
real-world measurements [WKHW02, HJL+09, HJL+12] have shown that errors in
WLAN are generally not distributed independently. We used two approaches to
cope with this problem: first, we investigated the whole BER range from 0 to 0.5,
that is, completely randomized output. As the error rate increases, the length of
error bursts also increases. Hence, while a nominal BER might lead to longer average
error bursts in real-life WLAN deployments than it does in our simulation, we do not
neglect the investigation of the effect of error bursts on our results. Second, we also
investigated a Markov model that simulated error bursts; we will show some results
from the measurements and see that, in fact, the difference to a simple Bernoulli
process, while significant (depending on the parameterization), is mostly irrelevant
for realistic scenarios.

Note that in our setup, there is no modeling of packet loss or reordering. This means
that the phenomenon of incorrect repairs of sequence number and timestamp, as
described in Section 3.4.3, is a more rare occurrence. However, it is not completely
removed from our evaluation due to “crosstalk” effects in the case of misattribution,
which we will describe when presenting the respective results in Section 3.4.5.3.

Without packet loss, misattribution is the main metric that we investigate in this
evaluation, more so than in Section 3.2.4. On the other hand, we will more closely
investigate effects of misattribution, and how to further curb its detrimental effects,
even under extreme error rates.

Our test included setups of 2, 3, and 4 concurrent RTP streams (over the same RTP
connection). While a single-stream connection is arguably the most common use
case of RTP, especially when using VoIP, it is also a very boring setup: since we do
not model packet loss, and misattribution cannot occur, the result would always be

90 3. Refector: Protocol-Specific Heuristic Header Error Recovery

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5

M
is

a
tt

ri
b

u
ti
o

n
 R

a
te

Bit Error Rate

2 streams
3 streams
4 streams

Figure 3.18 Misattribution rates for two, three, and four concurrent streams. For each in-
vestigated bit error rate (increments of 0.001 from 0 to 0.5), the mean and 95% confidence
intervals are shown. Even at a bit error rate of 20%, we witnessed virtually no misattributions.

a stream of packets with perfectly repaired static and predictably dynamic fields,
regardless of error rate. Each test run comprised 10 0000 packets for each stream
in each experiment. For each data point, we executed 10 test runs unless otherwise
noted. (Error bars denote 95% confidence intervals.) This is especially important
since oRTP follows the advice of the RFC [SCFJ03] and randomizes its SSRCs, so
Hamming distances between the SSRCs can differ strongly from run to run. To
quickly reach a steady-state in which the learner–predictor database was seeded
with content, the first two packets of each stream were not corrupted.35 This was
especially important at very high BERs: if correct packets are received only rarely,
then results from run to run depend on random chance to a degree that conceal the
actual results: if the first two correct packets are only received after dozens or even
hundreds of corrupt packets, then all preceding packets will have been mis-repaired
because of lack of information in the database.

3.4.5.2 Misattribution

As a first step in our evaluation, we investigated the misattribution that occurred
with two, three, or four concurrent RTP streams. Figure 3.18 shows the results from
our experiments, in which we investigated BERs between 0 and 0.5, in increments
of 0.001.

The results show that misattribution is virtually nonexistent until BERs exceed
20%.36 At such high BERs, the payload will suffer such corruption that typically,

35This can be considered to model a scenario in which the initial setup of the RTP connection
was successful and link quality degradation happened subsequently. Note that any application
could also enforce this behavior itself in a real-world scenario by only setting the SO_BROKENOK

header option after receiver several packets, guaranteeing that these packets are correct.
36Also note that at 50% BER, the misattribution rate for n streams approaches n−1

n
, showing that

attribution is completely random, as can be expected when the error rate effectively randomizes
the header contents.

3.4. Refector for Stateful Protocols 91

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

F
ie

ld
 E

rr
o

r
R

a
te

Bit Error Rate

2 streams
3 streams
4 streams

Figure 3.19 Fraction of header fields with errors after repair due to incorrect repairing. The
high variance is due to error propagation: if a packet is misattributed, all following packets
will suffer from incorrect repair of some header fields until a correct packet is received for each
affected stream again. At high BERs, the rarity of correct packets leads to large and highly
varying numbers of incorrect repairs.

no useful reception can be expected any more, even with voice codecs designed for
error tolerance [NOCW07]. For practical scenarios, misattribution can therefore be
considered a negligible problem. These results again show the practical feasibility
of heuristic error recovery.

3.4.5.3 Field Errors

The previous result only considered misattribution of a packet to an incorrect RTP
stream. However, even when packets are not misattributed, important fields can be
repaired incorrectly. We therefore investigated how often field errors occurred, that
is, how often a field was misrepaired and contained a different value after repair on
the receivers side, compared to the original value with which it left the sender. The
results are presented in Figure 3.19. Note that this only considered errors in static
and predictably dynamic fields. Unpredictably dynamic fields are not considered in
this situation due to the fact that they are not repaired and hence, errors in those
fields do not provide any insight into the repair performance.

The much higher field error rate (compared to the misattribution rate) is mostly
due to the effect of error propagation, coupled with long series of corrupted packets
without any correct packets in between. For illustration, consider the following
scenario: Two streams, A and B, have most recently sent the sequence numbers seqA

and seqB, respectively, so that the next expected values are seqA +1 and seqB +1. If
now a corrupted packet pn that belongs to stream A is received, but misattributed
to stream B, then its sequence number will be misrepaired to seqB + 1 instead of
seqA + 1. If the next packet pn+1 is also corrupted, it will now invariably also suffer
from misrepair, even if no misattribution occurred: if it belongs to A, its sequence
number will be misrepaired to seqA + 1 instead of the correct seqA + 2; if it belongs

92 3. Refector: Protocol-Specific Heuristic Header Error Recovery

to B, its sequence number will be misrepaired to seqB + 2 instead of the correct
seqB + 1. This error will propagate until both the stream pn correctly belonged to
and the stream it was misattributed to receive a correct packet to resynchronize
the sequence number to the correct values. At high bit errors rates, correct packets
without any errors are rare, so it can take many packets for this resynchronization
to occur. This same behavior leads to an error propagation in the timestamp field.

While this behavior at first seems to be a large problem, remember the explanation
in Section 3.4.3. Error propagation overestimates its effect on the stream, since dis-
ruptions in the “natural” progression of sequence number and time stamp only occur
at the original point of desynchronization and at the point that resynchronization
takes place. Furthermore, field errors are not a significant problem below 10–15%
BER and rarely appear at these, already quite high, error rates.

The very large confidence intervals in Figure 3.19 are a result of this error propaga-
tion, combined with the fact that at high BERs, correct packets are rare. Hence, in
each experiment, once an error occurred, the number of packets that suffered from
error propagation until a correct packet was received varied strongly. This shows
that our decision to always send the first two packets of each stream without any
errors to instantly reach an initialized state in our database supported the lucidity
of our result presentation: without such a measure, the results of our misattribution
rates in Figure 3.18 would show confidence intervals that were similarly, if not quite
as large.

3.4.5.4 Reduction of Misattribution

While Section 3.4.5.2 already showed very satisfactory results, we still wanted to
consider measures to reduce misattribution even further. Our motivation was that,
even in streams that show BERs low enough to be useful, and in which misattribution
generally does not occur, short effects that lead to a sudden drop in reception quality
(e.g., strong, short fading effects, interference) could momentarily produce very high
BERs for a single or a few packets, or even only parts of a packet, for example,
the RTP header, without degrading lower-level headers and streaming payload. In
such a situation, an otherwise perfectly working heuristic recovery could produce
undesirable misattribution.

We therefore investigated when such misattribution tended to happen, and whether
there were signs that could be extracted from received packets to suggest a poten-
tial misattribution. In our search, we limited ourselves to such information that
was available to the receiving oRTP library, so that the results could be directly
implemented to produce a misattribution avoidance scheme.

One such information is the minimum Hamming distance, that is, the Hamming dis-
tance of the packet’s header contents to the expected values of the closest match. A
low Hamming distance means a near-perfect match, while a high Hamming distance
signifies large difference between the expected and the witnessed results. It therefore
stands to reason that, if the Hamming distance to the chosen match is high, then
the risk of misattribution is larger, because it is relatively unlikely for random bit
errors to occur in a way that changes a header to perfectly match a different one.

3.4. Refector for Stateful Protocols 93

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60

n
u

m
b

e
r

o
f

m
is

a
tt

ri
b

u
ti
o

n
s
 i
n

 d
a

ta
s
e

t

minimum Hamming distance

2 streams
3 streams
4 streams

Figure 3.20 Misattribution occurs due to high bit error rates. A side effect of high BERs
is that even the best match often shows a high Hamming distance to its expected header
values. Hamming distance can therefore be used as an estimator for risk of misattribution.
At low Hamming distances, no misattribution occurs. Extremely high Hamming distances are
uncommon because it is more likely another match with lower distance exists instead.

To investigate the relationship between minimum Hamming distance and misattri-
bution, we checked the minimum Hamming distance every time a misattribution
had occurred in our data sets. Figure 3.20 shows the relationship between the two
metrics. It can be seen that relating the two metrics in such a manner produces a
Gaussian distribution. Misattributions virtually never occur at Hamming distances
below 20. They peak at a value between 36 and 40, depending on the number of
concurrent streams, then become rarer again.37 The fact that there is a peak mis-
attribution rate at certain minimum Hamming distances is due to the fact that two
factors influence these results: On the one hand, higher Hamming distances are a
result of higher BER, which also produces higher misattribution rates. On the other
hand, the numbers given in the graph are absolute: very high Hamming distances
are less likely to occur, even at high bit error rates, because there are always several
matches to choose from (two, three, or four, depending on the number of streams):
at some point, the maximum distance cannot be increased because the header oth-
erwise will start to match a different stream’s expected values more closely. This is
also why, as the number of streams increases, the peak of the curve is reached at
lower Hamming distances, and the curve is steeper.

As a result of these insights, we decided to extend our oRTP implementation with
a cutoff value. If the minimum Hamming distance ended up being larger than
this cutoff, the packet would be dropped instead of assigned to the stream. We
then reran our experiments with the same setup as previously, but with different
cutoffs. The results are presented in Figure 3.21. It shows the misattribution rate at
different cutoffs, for the 4-stream scenario. We focused on this one because it showed
the highest misattribution rate in our original scenario. The results show that we

37For reference, a standard RTP header has 96 bits.

94 3. Refector: Protocol-Specific Heuristic Header Error Recovery

 0

 0.001

 0.002

 0 0.1 0.2 0.3 0.4 0.5

M
is

a
tt

ri
b

u
ti
o

n
 R

a
te

Bit Error Rate

24
22
20
18

Figure 3.21 Misattribution rate in a 4-stream scenario for different Hamming distance cut-
offs. By setting a cutoff and discarding all packets whose best match has a higher distance,
misattribution can be reduced dramatically. Even at a cutoff value of 24 (one quarter of the
96 bits of the standard RTP header), misattribution stays below 0.2%, regardless of BER, and
becomes exceedingly rare at stricter cutoffs.

can virtually prevent any misattributions by settings a relatively strict cutoff at a
minimum Hamming distance of 18, over the full BER range from 0 to 0.5. Even
at more lenient cutoffs, the misattribution rate becomes small and manageable (less
than 0.0002 at 20, less than 0.0005 at 22, less than 0.002 at 24). Thus, a simple
change that is easily to implement into the RTP library can effectively prevent
misattributions even under extremely high BERs.

However, this prevention comes at a price, since we now discard packets. Some of
these discarded packets might in fact have reached the correct application had they
not been cut off, and therefore are lost even though they would have been useful. At
high BERs, the number of discarded packets becomes significant. To fairly compare
the original (non-cutoff) and cutoff performance, we need to investigate the packet
drop rate.

Again, we focus on the 4-stream scenario, and present in Figure 3.22 the packet drop
rates for the previously chosen cutoffs of 18, 20, 22, and 24. Indeed, the drop rates
are sizable. In fact, drop rates surpass misattribution rates for most BER values
(cf. Figure 3.18). However, for the most relevant BERs (below 10%), drop rates are
low. For the strictest cutoff value of 18, drops start to occur at about 4% BER, and
reach 10% drop rate at 10% BER. The less strict cutoff of 20 only has a a drop rate
of about 1% at 10% BER, and the most lenient cutoff of 24 rarely drops any packets
until the BER is in excess of 15%.

It is hard to exactly derive a one-size-fits-all suggestion. However, a cutoff of 20
seems to perform reasonably well, and will only perform better in scenarios with
fewer concurrent streams. It produces low packet drop rates, while preventing mis-
attributions effectively.

3.4. Refector for Stateful Protocols 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

D
ro

p
 R

a
te

Bit Error Rate

24
22
20
18

Figure 3.22 Drop rate in a 4-stream scenario for different Hamming distance cutoffs. When
using cutoffs, misattribution rate is reduced, but packets are outright dropped instead. How-
ever, even at a strict cutoff rate that prevents virtually all misattribution (see Figure 8), drop
rates stay minimal until BER is in excess of 5%.

3.4.5.5 Markov Chain Model Performance

We promised in Section 3.4.5.1 to discuss the differences between using a Bernoulli
process and a Markov model on the misattribution rate. To understand the differ-
ences, let us first quickly restate the concept of Markov chains and some of their
properties. We will not go into the details of formal definitions via random variables,
but will instead keep in mind our application scenario.

A Markov model, often visualized as a Markov chain, is a probabilistic process that
comprises several states, with each state having certain transition probabilities to
other states. Such a model is assumed to be memoryless: the transition probabilities
only depend on the current state the system is in, not on any previous states. In our
scenario, we used a simple Markov chain in our corruptor (cf. Figure 3.17) to model
burst errors. This chain only comprised two states, a “non-flip” (do not change bit)
and a “flip” (change, i.e., corrupt, bit) state. For each bit of the input stream, a
random number was created to model state transition. Compared to the simple
Bernoulli scenario with a single bit error probability p that was completely stateless,
our Markov model had two error probabilities, p1 and p2.

The model is visualized in Figure 3.23. Note that in our case, p1 models a transition
from q1 to q2, while p2 models the chains staying in state q2. This is to use those two
as error probabilities: p1 models the probability to produce an error after a no-error
event, while p2 models a subsequent bit error after an error had already occurred,
and therefore an error burst. At p1 = p2, the model becomes the previous Bernoulli
model.

Since now we had two scenario variables, our number of experiments would explode
if we were to investigate them all in the same detail as before. We therefore decided
to only focus on a few values for p2, modeling different tendencies to produces burst

96 3. Refector: Protocol-Specific Heuristic Header Error Recovery

q1start q2

1 − p1
p1

p2

1 − p2

Figure 3.23 A simple two-state Markov Chain. From the starting state q1 (in our application:
the error-free states that does not flip a bit), the model can move to state q2 (in our application:
the error state that flips bits) with the probability p1. While in state q2, the model will stay in
that state with the probability p2.

errors, while letting p1 run from 0 to 0.5. In the following, we will present results
for p2 = 0.4, 0.6, 0.8. These model different tendencies to produce burst errors. We
can calculate the expected error burst lengths by taking the expected value of state
transitions until changing from q2 back to q1, and adding 1 (because changing into
state q2 already corrupted one bit). The expected length of staying in a state is
the reciprocal value of the probability of transitioning out, so the expected error
burst length is 1 + 1

1−p2
. To calculate the effective BER, we need to calculate the

steady-state probability of being in state q2. We can do this by taking the transition
matrix of our Markov chain,

(

1 − p1 p1

1 − p2 p2

)

and solving the following linear equation, where (x1, x2) are the probabilities of the
Markov chain’s stationary (steady-state) distribution:

(

x1 x2

)
(

1 − p1 p1

1 − p2 p2

)

=
(

x1 x2

)

⇔
(

x1(1 − p1) + x2(1 − p2) x1p1 + x2p2

)

=
(

x1 x2

)

Displayed as a linear system, with the added constraint that the probabilities must
add up to 1, so x1 + x2 = 1:

x1 − p1x1 + x2 − p2x2 = x1

p1x1 + p2x2 = x2

x1 + x2 = 1

⇒ x1 = (1−p2)x2

p1

⇒ x2 = 1 − (1−p2)x2

p1

⇒ p1x2 = p1 − x2 + p2x2

⇒ (1 + p1 − p2)x2 = p1

⇒ x2 = p1

1+p1−p2

The effective BER is therefore p1

1+p1−p2
. Table 3.2 shows the expected burst error

length and effective BER for the three chosen values for p2.

3.4. Refector for Stateful Protocols 97

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5

M
is

a
tt

ri
b

u
ti
o

n
 R

a
te

Effective Bit Error Probability

p2=0.4

p2=0.6

p2=0.8

Figure 3.24 Misattribution rates for three different values of p2. The effective BER is cal-
culated from the values given in Table 3.2. While at large susceptibility for burst errors, the
misattribution rate is noticeably higher than in the Bernoulli model (cf. Figure 3.18), the results
are still comparable. Again, we only witnessed misattributions at BERs that are high enough
to already cause serious problems in media decoding.

Figure 3.24 shows the misattribution rates for the three presented values of p2.
Again, we focus on the most challenging 4-stream scenario. The effective BER is
calculated as given in Table 3.2, and the results are normalized to this BER for each
data set. This explains the somewhat counter-intuitive result that, at high effective
BERs, the misattribution rate for p2 = 0.6 is higher than for p2 = 0.8: at these high
error rates, the normalization produces artifacts. For example, at an effective BER
of 0.5, p1 = 0.2 if p2 = 0.6, but p1 = 0.1 if p2 = 0.8. As the chance to produce long
error bursts increases, the tendency to produce long error-free bursts also increases
to produce the desired effective BER.

When focusing on the more relevant low-BER areas of the graph, it can be seen
that, while misattributions occur at a lower effective BER than in the Bernoulli
case (cf. Figure 3.18 on page 90), up to 10% BER, they are still exceedingly rare.
These results suggest that while a Bernoulli distribution slightly underestimates
misattribution rates if long burst errors are the norm, the results are still comparable.

p2 Expected burst error length Effective BER

0.4 2.66 p1

0.6+p1

0.6 3.5 p1

0.4+p1

0.8 6 p1

0.2+p1

Table 3.2 Expected error burst length and effective BER (depending on p1) for specific values
of p2.

98 3. Refector: Protocol-Specific Heuristic Header Error Recovery

3.4.6 Summary

In this section, we showed that it is possible to design header recovery techniques
that are not only applicable to static header fields for which values never change over
the course of a connection, but also for fields that are changing, but in a predictable
fashion.

Our application of these concepts to RTP allowed us to create recovery techniques
that produce correct assignment of packets to RTP streams, even under very high
error rates. Depending on the configuration, bit error rates up to 20%–25% BER
do not produce any misattributions. If misattributions should reliably be prevented
even under extreme conditions, then a cutoff value can be introduced to minimize
or completely prevent misattributions, regardless of error rates, at the cost of an in-
creased packet drop rate. In our results, we could completely prevent misattributions
and still assign virtually all packets correctly up to BERs of 5–7%.

Finally, we discussed the differences between a simple Bernoulli and a Markov error
model, and showed that, while there are differences between the two, differences do
not become relevant until BERs become very high, a result that motivates the use
of a similar Bernoulli-model driven setup in the next chapter.

3.5 Summary and Discussion

In this chapter, we proposed several techniques to heuristically recover from errors
in headers of communication protocols. We showed that, since an end host always
knows which connections are open and how headers for those connections should
look like, can match incoming corrupted headers against those expected values to
find the most likely match for the packet, and that the Hamming distance is a simple
and effective metric to do this matching.

We investigated headers of standard protocols and identified significant areas of those
headers as irrelevant for recovery on end hosts, allowing our recovery techniques to
ignore potential errors in those fields. For other fields, we proposed techniques
to repair them, either by matching them against expected values, or by predicting
future values from past ones. Additionally, we investigated the possibilities to choose
header fields in a way that increases robustness without changing the protocols
themselves, keeping compatibility.

In our evaluation, we showed that heuristic header error recovery is an effective
solution. Even compared to previous approaches such as UDP-Lite, our solutions
produce significant performance improvements, recovering more erroneous packets.
We also showed that the specific problem of our approach, misattribution, can be
kept in check, effectively preventing it except for very rare occurrences. Finally, in
addition to general performance metrics, a specific use case employing audio decod-
ing showed that heuristic header error recovery indeed can improve the perceived
quality significantly.

3.5. Summary and Discussion 99

To conclude this chapter, we will discuss some loose ends and concepts that we
did not implement or investigate in detail, but that could form the basis of future
extensions of our work.

Selective NoAck Signaling

In Section 3.2.3, we explained how to facilitate parallel error-tolerant traffic without
ACKs and error-sensitive (legacy) traffic with ACKs. To this end, we used the
preexisting mapping from IPv4 ToS fields onto ACs, and added logic to send traffic
from some ACs without ACKs.

This approach has one significant drawback, in that the ToS field needs to be set
accordingly, which is under the sender’s control. Therefore, this setup, while work-
ing, goes counter to our design goal of easy and incremental deployment by only
introducing local changes at the receiver’s side. Even worse, some core routers may
reset the ToS field to 0.

Therefore, we suggest a better suited approach. Protocols that manage aspects of
the traffic between the AP and the STAs in a WLAN network have existed for a long
time. Some well-known examples are the Universal Plug and Play (UPnP) protocol
suite [ISO11] which allows network discovery and setting up functionality, and more
specialized approaches such as the NAT Port Mapping Protocol (NAT-PMP) [CK13]
or the Port Control Protocol (PCP) [WCB+13], which allow setting up Network
Address Translation (NAT) traversal from a local WLAN to the Internet. With
these protocols, a client (the STA) can request from the server (the AP) to set up a
NAT traversal for traffic inbound to a certain port. In the same spirit, one of these
protocols could be extended (or a similar one created) that allows the STA to signal
to the AP that traffic inbound to a certain port or address/port combination should
be sent over the wireless link without ACKs.

This solution relieves the sender from any need to participate in our recovery scheme,
reinstating our requirement to be independent from the sender and have a receiver-
only solution. Only the AP in the receiver’s network has to be changed, but we
consider this requirement to be in line with our envisioned use case of private users
who have full control over their AP.

Extensions for RTP Recovery

We consider two extensions of Refector recovery for RTP. The first considers the
Hamming cutoffs as introduced in Section 3.4.5.4. We already noted that the number
of concurrent RTP streams had an influence on the Hamming distance distribution
with respect to misattributions. Eventually, we suggested a cutoff at a Hamming
distance of 20. From our results, this seems to produce a good tradeoff between min-
imal misattribution and high recovery rates. However, since the number of streams
has an influence, it might be beneficial to use a dynamic cutoff scheme, in which
the cutoff is chosen by the number of concurrent connections (stricter cutoffs at
higher number of concurrent connections). To further increase the detail of infor-
mation for the dynamic cutoff choices, it might also be beneficial to (additionally

100 3. Refector: Protocol-Specific Heuristic Header Error Recovery

0 4 8 12 16 24 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 3.25 Layout of the IPv6 header (without header options).

or instead) investigate the Hamming distances between significant fields (first and
foremost the SSRC) between concurrent connections, and choose the cutoff accord-
ingly: the higher the minimum Hamming distance between fields, the more lenient
the cutoff value.

This leads to the second possible extension. Just as we created a system for IP to
produce high Hamming distances between ports, a system to produce high Hamming
distances between SSRCs of concurrent streams within one RTP connection would be
highly beneficial, especially since the number of concurrent streams within one RTP
connection is typically very small, while the SSRC header field is even larger than the
port field. We did not implement this because the SSRC is chosen by the sender, not
the receiver. To influence SSRC choice would therefore conflict with our goal to have
a solution that is independent of the sender and easily deployable. However, adding
such a scheme whenever recovery techniques are implemented in additional RTP
libraries might nevertheless be beneficial. The changes do not change the protocol’s
communication behavior and can therefore be rolled out gradually. While the user
of such an extended library would not benefit from these changes themselves, their
communication partner potentially might; as these high-distance SSRC extensions
were to be gradually implemented into RTP libraries, the users would start to benefit
whenever their communication partner also used such an extension.

Refector for IPv6

While IPv6 deployment is still a topic of discussion more than 15 years after its
original standardization, we expect that eventually, IPv6 will supplant IPv4 in many
areas and use cases. With respect to future developments, it therefore is beneficial
to also consider Refector for IPv6. While we did not implement and test solutions
for IPv6, we will give some suggestions on how to recover from IPv6 header errors.

3.5. Summary and Discussion 101

The layout of an IPv6 header is given in Figure 3.25. Two changes compared to
IPv4 are apparent. First, many fields that we classified as don’t-care, such as the
header checksum and the fragmentation fields, have been removed. The reasoning
for this by the designers of IPv6 is similar to our reasoning for classifying those
fields as don’t-care: they either provide support for features that are unnecessary
because they are already provided by other layers or not used any more. Second,
the IP addresses are much larger, now forming the by far largest part of the header,
and are the main contributor to the fact that the header is now larger than before,
despite the fact that some fields were removed without any replacement.

The larger header suggests that header error recovery for IPv6 is even more beneficial
than for IPv4, because the risk of errors increases with size. On the other hand, we
categorized addresses as vital fields, and thus the larger addresses are problematic
with respect to error tolerance.

However, we can leverage a side effect of how IPv6 is deployed in practice. Due
to the massive increase in the number of available addresses, they are handed out
much more freely than in IPv4. Even end users often receive not only a single IP
from their Internet Service Provider, but a subnet of addresses. This allows us to
use “coded” IP addresses in a similar way to destination ports (cf. Section 3.2.2.2),
since an end host can be addressable via more than one IP address. Within the
ISP-provided subnet of IP addresses, we can then choose IP addresses with large
Hamming distances to identify different connections. Note that in this case, it is
sufficient to use different IP addresses for error-tolerant streams only, and have all
error-sensitive connections use the original IP address. Since there is no misattribu-
tion possible towards error-sensitive connections, there is no need to further distin-
guish between different such connections; only the fact that the packet belongs to
some error-sensitive connection is important, because an corrupted packet identified
as belonging to any error-sensitive connection is discarded in any case. Only having
to use one additional IP address per error-tolerant connection significantly reduces
the number of addresses needed, in turn increasing the robustness by using more
bits of the subnet range as coding. Setting up new IP addresses for error-tolerant
connections requires support in the network stack of the receiver, so that the OS
will assign connections from error-tolerant applications to unused IP addresses from
the available range. Support by the AP is also beneficial, because, if the network
comprises several STAs that want to use error-tolerant communication, the AP can
act as the central entity that ensures that all addresses used in the network are
assigned according to rules that maximize Hamming distances. Such support can
be implemented in similar ways to those described above for NoAck signaling.

In fact, such a system could even be deployed to great use in any NATed network
(for both IPv4 and IPv6). By using, for example, the private 10.0.0.0/8 network,
24 of the 32 bits in an IPv4 address can be used to create coded addresses with
large Hamming distances. We expect this approach to further reduce the risk of
misattributions and increase the overall robustness of our recovery mechanisms.

102 3. Refector: Protocol-Specific Heuristic Header Error Recovery

[T]here are known knowns; there are things we know we
know. We also know there are known unknowns; that is to
say we know there are some things we do not know. But
there are also unknown unknowns—there are things we do
not know we don’t know.

—Donald Rumsfeld

4
Protocol-Independent Heuristic
Header Error Repair

In the previous chapter, we presented Refector, a system to heuristically recover
from errors in protocol headers. We showed that the approach is feasible and can
produce large gains over alternative solutions, and that its main downside, the risk
to misassign a packet to the wrong application, can be prevented effectively.

However, there is one disadvantage of Refector as presented in the previous chapter:
for heuristic recovery, it is necessary to investigate the protocols that are to be
supported in a very detailed fashion.

In this chapter, we will present a solution that fundamentally expands the concepts
of Refector. Instead of being specific to certain protocols, it can recover from errors
independent of the protocols being used. To do so, it recognizes which connection a
packet belongs to, even if headers are corrupted, and without any knowledge about
the semantics of those headers.

We will first introduce our problem space and challenges, motivate our approach,
and propose design goals in Section 4.1. In Section 4.2, we will then present the
algorithmic design that stems from these goals. We will give some insight into
the implementation of the algorithm in Section 4.3. In Section 4.4, we will show
evaluation results that underline that our solution is both effective in classifying
packets correctly – recognizing which connection a packet belongs to – and efficient
– doing so quickly, both in per-packet processing time as well as adapting to new
connections. We will present observations regarding classification via packet size and
inter-arrival time in Section 4.5, an approach that, while we ultimately abandoned
it, provides valuable insights into the inherent problems of using such information.
Finally, we conclude this chapter in Section 4.6.

104 4. Protocol-Independent Heuristic Header Error Repair

4.1 Introduction and Motivation

As mentioned above, the motivation for the work presented in this chapter is that
Refector’s recovery techniques are always specific to certain protocols. This means
that extending Refector for new protocols involves a considerable amount of manual
labor: each protocol needs to be investigated by someone familiar with it. Of course,
we learned general approaches and basic concepts from our Refector implementation
for IP, UDP, and RTP, for example, the classification of header fields into different
classes of importance. However, this does not relieve us from repeating these steps
for every protocol we want to support. Extending Refector to new protocols thus
requires specific knowledge about these protocols. This knowledge then needs to
be transformed into an implementation. Until this point, those protocols cannot
benefit from from heuristic header error recovery.

This idea led us to a new challenge: the design of an algorithm that can automatically
apply heuristic header error recovery to protocols, without knowing anything about
those protocols. At first, this task seems daunting. How could an algorithm learn
the intricacies of protocols without any previous knowledge? This is compounded
by the fact that such an algorithm should not take too much time producing a good
understanding of the used protocols: if it takes dozens, hundreds, or even thousands
of packets to properly identify how to introduce heuristic header error tolerance into
a protocol, then the connection might be closed by the time it has come to that
conclusion; or at the very least, the connection will not be able to benefit from error
tolerance for a long time.

Nevertheless, just as in the case of Refector, where we started with the simple mail
courier analogy to break the problem down to a manageable core problem, we start
with a simple observation. We are especially interested in protocols that fulfill the
job of multiplexing and demultiplexing several logical streams onto one connection,
because this demultiplexing step is the source of harmful misattributions. Indeed,
all protocols presented so far feature such a demultiplexing unit: IP and UDP (and
IP/TCP in the same fashion) together contain IP addresses and port numbers to de-
multiplex connection that share a common physical line. RTP demultiplexes streams
identified by SSRCs that share a common connection. Finally, MAC protocols, while
not a focus of this dissertation, similarly identify which of the receivers that share a
common channel a frame belongs to by a MAC address.

We observed that the information identifying which logical stream a packet belongs
to is invariably static: MAC and IP addresses, port numbers, SSRCs. As such, they
should be easily identifiable in packets. Of course, other fields can likewise be static
in a packet (version number, unused fields, etc.). However, these will either be the
same in all packets over all connections, in which case it is simply a question of
designing the algorithm in a way so that static and important fields do not “drown”
in a mass of static, but unimportant fields. Or these fields will not be the same over
all connections, in which case, we can actually use those to identify the connection
a packet belongs to in addition to the fields designed for that purpose.

From this basic insight, we can now see that it should be possible to design a machine-
learning algorithm that identifies important fields (in the sense of Section 3.2.1 and

4.1. Introduction and Motivation 105

Figure 3.1, that is, fields important to the demultiplexing decision) without any
outside information that is not contained in the packet headers themselves. However,
such an algorithm needs to fulfill several requirements:

1. The algorithm must be effective. This means that it should identify packets
correctly (in the terms of pattern recognition: have a high hit rate) with very
low misattribution.

2. The algorithm must work on streaming data. It is expected to learn its pattern
online, while data is being received, and to adapt the pattern it matches to
continuously. Such so-called data stream mining algorithms [BBD+02,GZK05]
form a specific sub-field of data mining algorithms.

3. The algorithm should have a cutoff threshold. As opposed to standard classi-
fication algorithms used in machine learning, which always assign the input to
a class, the algorithm should drop packets that are too different from all exist-
ing classes, that is, expected header values for connections. As we saw when
investigating RTP, such a cutoff threshold is beneficial to prevent undesirable
misattribution rates at high bit error rates.

4. The algorithm must be fast to learn new characteristic patterns for newly
opened connections. As said above, an algorithm that takes dozens or even
hundreds of packets to produce a robust (in the sense of producing high recall
rate) pattern will not be able to reach the desired performance.

5. The algorithm must be fast to classify incoming packets. Even a 802.11a/g
connection produces several packets per millisecond at high speeds, and this
number only increases for 802.11n or 802.11ac. If the algorithm takes more
than a few microseconds to classify a packet, it is at risk of being overwhelmed;
furthermore, it would produce a very noticeable computational overhead while
receiving data.

6. The algorithm should not use floating point numbers and operations. This, in
contrast to the previous requirements, is less of a design and more of a practical
requirement. While floating point operations are slower than integer operations
(which could interfere with requirements 4 and 5), the main reason is that this
algorithm should be easily portable into an operating system kernel’s network
stack. In many kernels, among them the Linux kernel, the floating-point unit
is reserved for user-space calculations [Tor04] for performance reasons.

These specific requirements mean that popular standard classification algorithms
such as support vector machines [CV95] or ensemble methods such as AdaBoost
[FS97] or random forests [Bre01] are unsuitable for this task. On the other hand,
our original idea only requires us to identify static areas in header fields, and such
an algorithm can be implemented to be very simple and fast.

106 4. Protocol-Independent Heuristic Header Error Repair

4.2 Design

In the following, we will first discuss further considerations and preliminary inves-
tigations we conducted to come to an informed design decision. Afterwards, we
will present the classification algorithm to heuristically identify and recover corrupt
packet headers.

4.2.1 Design Considerations

One of the cornerstones of our approach is the assumption that static header fields
can be easily recognized. To reach this goal, bits in a packet header need to either
be static over the course of the connection, or near-random so that their values will
change at least once within the first few packets. Conversely, bits that do change,
but only rarely, might reduce the effectiveness of the approach, because it takes
longer for them to be recognized, and thus the algorithm will take longer to produce
effective patterns to match incoming corrupted packets against.

To investigate the question of how header bits behave, and for continuous testing
of the algorithm during development, we created a data set of different types of
Internet connections with diverse use cases and connection behaviors, among those
ICMP pings, web surfing sessions on Wikipedia, several RTP-based online radios, as
well as YouTube video streams via HTTP and RTP, capturing the received data. To
create an error-free baseline data set, all data for these connections was transmitted
via Ethernet. When required, we injected errors into the error-free stream by means
of a corruptor, similar to the one described in Section 3.4.5.1.

On this data set, we investigated the randomness of bits over the course of a connec-
tion. As a representative example, we show the results from a 7269-packet YouTube
video stream in Figure 4.1. For each bit position, the average value over the course
of the connection is calculated. For example, if four packets were received, and the
nth bit was 1 in the first packet and 0 in the others, the average value is 0.25. Thus,
values equal to 0 or 1 denote static bits that did not change over the course of the
connection. Conversely, bits with an average value close to 0.5 were almost com-
pletely random. The figure shows that almost all bits fall either into the “completely
static” or “completely random” category. The small amounts of nearly-but-not-quite
static fields were mostly due to incrementing fields such as sequence numbers: the
high-order bits stayed at one value for a long time before changing eventually.

In this specific example, we truncated each packet to 46 bytes, the size of the smallest
packet received for that connection. This truncation was done for two reasons: first,
since even the smallest packets need to have headers, truncating to the smallest
size focuses our result on the header portions of the packet. Second, not doing any
truncation does not change the overall message of the graph, but makes it more
cumbersome to read: since the payload content changes from packet to packet,
payload bits are almost completely random. Not truncating the packet would lead
to a very large value for the two center bins, and make the lowest and highest bin
harder to discern. The resulting conclusion would still be the same: bits are almost
always either static or highly random.

4.2. Design 107

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.0
(0.0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

[0.6,0.7)

[0.7,0.8)

[0.8,0.9)

[0.9,1.0)

1.0

N
u

m
b

e
r

o
f

B
it
 P

o
s
it
io

n
s

Average Bit Value

Figure 4.1 Average values for each bit position in the first 46 bytes of a 7269-packet YouTube
stream. Bits are generally either completely static (0.0 or 1.0) or highly random (close to 0.5);
only very few positions show different behaviors.

With our assumption substantiated by real-world numbers, we can now design an
algorithm that recognizes static bits in connections and uses those to identify the
correct connection for corrupted packets. Note that this does not yet give us any
insight into whether choosing these bits will actually produce an effective classifi-
cation: so far, we only assume so, based on expectations we have from results in
the previous chapter. In the end, only a classification performance evaluation will
answer this question.38 For now, however, we will focus on designing an algorithm
that is fast to run, fast to find static bits in new connections, and fast to adapt to
changing conditions, that is, if a hitherto static bit changed its value; a problem
that in data mining is known as concept drift.

4.2.2 Algorithmic Design

Similarly as in the solution designed for RTP (cf. Section 3.4.3), we designed the
algorithm in two parts. This follows the observation that we can distinguish two
classes of input for our algorithm: credible input from uncorrupted packets that is
used to create the classes, and potentially non-credible input from corrupted packets
that is classified against the classes created from uncorrupted packets. Just as before,
we will term the two algorithm parts learner and predictor.

The task of the learner is to create classes, one for each open connection (that
is, Internet socket); when a socket is closed, the respective class is removed. The
defining characteristic of each class is the position and value of static bits, that is,
bits that always had the same value in every packet belonging to that connection.
This can easily be done by keeping two bit fields for each class, the mask and the
value. The mask denotes which bits were static: a 1 denotes a static bit, while a 0

38And indeed, we will present evaluation results in Section 4.4 that show exactly this effectiveness.

108 4. Protocol-Independent Heuristic Header Error Repair

denotes a variable bit. The value contains the bit value of each bit. For static bits,
this contains the value that was seen in every packet; for variable bits, the content
is ignored.

For each incoming packet, the mask can now be updated with simple and very
computationally efficient bitwise operations:

masknew = (value ⊙ packet) ∧ maskold (4.1)

where ⊙ denotes an XNOR operation (that is, a logical NOT applied after an XOR
operation), and ∧ denotes an AND operation. XNOR is effectively a comparison
operation: if the compared bits are equal, it returns 1, and keeps the mask bit set
if it is still set. Otherwise, it returns 0 and marks the respective bit as nonstatic in
the mask.

The second field, the value, only needs to be initialized once, by copying the contents
of the connection’s very first packet into it, and afterwards not changing it at all: if
a bit never changed, there is no need to update it; if it did, then the mask will mark
it as unimportant, and it will be ignored.

This algorithm has several defining characteristics apart from its computational
simplicity: it is also very space-efficient, because it does not keep a large backlog
or window of data: all previous packets are aggregated into two bitfields of a static
size n that is a parameter of the algorithm. If the packet is larger than this size,
only the first n bytes will be taken into consideration; if the packet is smaller, it is
padded for the sake of this calculation. The idea here is that we focus on header
contents, so only considering a certain amount of bytes at the beginning of the packet
makes sense. Choosing a very small size will make calculations faster, but potentially
reduce accuracy, because only parts of the packet headers will be classified. Choosing
a very large size will slow down calculations, and likely introduce large amounts of
(near-random) data into the classifier. We settled on a size of 40 bytes, which, for
example, covers a combination of IPv4 and TCP, or of IPv4, UDP, and RTP.

The algorithm furthermore relies on non-static bits changing regularly to achieve
fast convergence to a characteristic pattern. This is another reason why the results
presented in Figure 4.1 are so important: these suggest that this is the case. We will
further investigate this point during the evaluation. Finally, concept drift is only
a problem for the algorithm if bits that used to be random become static, a case
that we discounted as unlikely in our design considerations. The opposite case, a
static bit becoming random (a more likely case due to high-order bits in counting
fields such as sequence numbers) does not introduce any problems: as soon as the
bit changes for the first time, the algorithm will immediately note this.

For predicting, we created a scoring algorithm that likewise only uses simple bit-
wise operations. Whenever a corrupted packet arrives, a score towards each open
connection is created,

score =
#((packet ⊕ value) ∧ mask)

#mask
(4.2)

4.2. Design 109

training packets
1. packet 0 1 1 0 1 0 0 0
2. packet 0 1 1 0 1 0 1 1
3. packet 0 1 1 0 0 1 0 1

learned pattern
mask 1 1 1 1 0 0 0 0
value 0 1 1 0 - - - -

scoring packets
packet A 0 1 1 0 1 1 1 1 score 0.0
packet B 0 0 1 0 0 1 0 1 score 0.25
packet C 1 0 0 0 0 0 0 0 score 0.75

Figure 4.2 Example of the scoring algorithm. Three packets are received for a certain con-
nection (top block). After learning from those three packets, mask shows the first four bits
to be static, with the static values in value (center block; unimportant values are denoted as
“–” for clearness; in the actual implementation, they are simply left unchanged). Incoming
packets are then be assigned a score (bottom block). The score of a packet is the ratio of
non-matching (static) bits to all (static) bits. Non-matching bits for to-be-scored packets are
denoted in bold, masked (ignored) bits in italic.

where # denotes a bit-counting operator, counting the number of 1-bits in a bitfield,
and ⊕ a binary XOR. In effect, the score is therefore calculated as the fraction of bits
that are static, but do not match the expected value, of all static bits. Lower scores
hence denote better matches: a score of 0 means a perfect match, while a score of 1
means that all static bits were exactly the opposite of the expected value.39

Figure 4.2 gives an example of how the learner and predictor parts of the algorithm
work. For this example, packets are considered to be only 1 byte (8 bits) long. After
receiving three uncorrupted packets, the mask has already reduced the number of
static bits to half the packet’s length. After this pattern is created, three corrupted
packets are received that potentially can contain header errors. For each of these
packets, the score towards the learned pattern is calculated. Packet A matches per-
fectly, while packet B and C show different amounts of deviations from the expected
pattern.

In a real system, a multitude of such patterns are expected to exist at any point
in time, one for each open connection. An incoming packet is matched against all
open connections and classified to belong to the connection is has the lowest score
towards.

First test results with this algorithm already showed it to be promising, but one
large problem persisted. Since the algorithm creates the mask from monitoring
packets for a connection, it only converges over time and starts out overspecific:
after the very first packet reception for a new connection, the mask does not mask
out any bits, and if a corrupted packet for that connection is received, the scores
even towards that correct connection will be very high, since, on average, it can be
expected that about half of all random bits (subsequently recognized as such when

39Note that scores are presented as values between 0 and 1 conceptually, suggesting that such an
algorithm might use floating-point numbers, violating requirement 6. However, this can easily be
circumvented by using fixed-point arithmetic and scaling the number of differing bits by a scaling
factor, then using integer division.

110 4. Protocol-Independent Heuristic Header Error Repair

refining the mask) will not match. The resulting score tended to be so high that
packets for new connections were routinely misassigned to the wrong connection.
While this problem could be alleviated by setting a strict cutoff value (that is, if
even the best score is above a certain threshold, drop the packet instead of assigning
it to that connection), this could not completely prevent this behavior, and to at
least somewhat reign it in, the cutoff value had be set to such strict values that we
considered the resulting high drop rates to be unacceptable.

Instead, we designed an extension to our scoring algorithm that creates combined
scores. Such a combined score is designed to specifically highlight the differences in
important bits that two connections share, by calculating a combined mask:

cmask1,2 = mask1 ∧ mask2 ∧ (value1 ⊕ value2) (4.3)

A combined mask is created by pairwise AND-ing of two standard masks of two
connections. This allows to “boost” a non-specific mask from connections in their
early phases with more specific masks of other connections. The idea behind this
comes from the observation that protocols typically have fixed header layouts, so
that the important bits are always in the same position inside the header. While
there are many different protocols, and, for example, the protocol-specific mask for
a connection using IPv4 looks different from one using IPv6, only focusing on bits
that are known to be important in at least some connections is nevertheless helpful.

An example of combined scoring is presented in Figure 4.3. The first step from
Figure 4.2, showing correct packets that trained the learner, is omitted; we imme-
diately start with two connections and their respective masks and values at some
point in time. As can be seen, the mask of connection 2 is completely unspecific:
because only one packet had been received so far, no bits have been masked out yet.
From the two connections, their combined mask is calculated. We then consider a
corrupted incoming packet. Only considering the score for a packet, we can see that
the score for connection 1 is 0.2, while for connection 2, it is 0.375: the packet should
be assigned to connection 1. However, this decision is dominated by the second half
of the packet, which might already belong to the payload, or contain non-static bit
fields. This is the exact situation that led to misattribution in our preliminary eval-
uation. Note that this effect is much more problematic in real-life scenarios where
packets are larger and there tend to be many more non-static than static bits. In this
example, it seems that simply setting a cutoff at 0.2 would solve the problem. With
real-world packets, however, this threshold had to be much stricter to reliably rule
out misassignments, thus increasing unnecessary packet drops. The combined score
for the two connections paints a different picture. In this example, they only differ
in one bit, and this one matches for connection 2 and does not match for connection
1, leading to scores of 0.0 and 1.0, respectively. This suggests that connection 1,
which was suggested by the normal scoring, might not be a good match after all.

As we will see in the evaluation, combined scoring proved to be very effective at
preventing misattributions while keeping packet drop rates low. However, it is not
without drawbacks. Because we have to do a pairwise comparison between all ongo-
ing connections, we have increased the computational complexity of our algorithm

4.2. Design 111

connection 1
mask1 1 1 1 1 0 1 0 0
value1 1 0 1 1 - 1 - -

connection 2
mask2 1 1 1 1 1 1 1 1
value2 1 0 1 1 0 0 1 1

combined mask 0 0 0 0 0 1 0 0

incoming packet 1 0 1 1 1 0 0 0

score for connection 1 1 0 1 1 1 0 0 0 0.2
score for connection 2 1 0 1 1 1 0 0 0 0.375

combined score for connection 1 1 0 1 1 1 0 0 0 1.0
combined score for connection 2 1 0 1 1 1 0 0 0 0.0

Figure 4.3 To improve the classification algorithm, we introduced combined masks. Two
connections are open. Connection 2 has only recently been opened, and its mask does not yet
mask out any bits (e.g., because only one correct packet was received so far). To specifically
compare the two connections, a combined mask is computed from the two masks and values
(top block). A corrupted packet is received and needs to be classified (center block). The
scoring algorithm suggests that it more likely belongs to connection 1, due to the large number
of mismatching bytes for connection 2. The combined score, however, suggests that the packet
should not be assigned to connection 1, either.

from O(n) to O(n2). This can quickly become problematic. In the previous chapter,
we noted that we typically saw fewer than 60 open connections on an end host dur-
ing typical use, and never more than 100. However, this means that doing combined
scoring requires, instead of 60–100 score calculations, 3 600–10 000 score calculations
(plus the respective calculations of the combined masks themselves), which can trans-
form an algorithm whose overhead is hardly noticeable into an impractically slow
one.

We therefore limited the use of combined scoring. It is only used if

(a) a new connection exists40 whose mask had not had the chance to stabilize yet.
In this case, combined scoring will only be done between this new connection
and all other connections.

(b) there are several connections that show a “good” score toward a packet. In
this case, combined scoring will only be done between these good connections,
to serve as an additional safeguard against misassignments. The definition of
“good” is somewhat arbitrary; in our experiments, 0.2 showed to be a good
number that did not negatively influence classification quality, while keeping
the computational complexity low and the algorithm quasi-linear.

The two scoring methods are combined into one scoring algorithm by executing the
following steps for each incoming corrupted packet:

1. Calculate the score of the packet towards each connection. If the score is above
a preset threshold θs, remove the connection from consideration. Order the
remaining connections by increasing score.

40We defined “new” as having received fewer than 10 correct packets. The reasoning behind this
seemingly arbitrary number will be discussed in the evaluation.

112 4. Protocol-Independent Heuristic Header Error Repair

2. For the first item in the list, if combined scores should be calculated as per
the rules above, calculate the combined scores for that item between this item
and other eligible items in the list. If none of these combined scores is above a
preset threshold θcs, continue. Otherwise, remove the item from consideration
and repeat with the next item, until a suitable item is found or the list is
empty.

3. If the list is empty, drop the packet under consideration. If the top item of
the list is a connection marked as error-tolerant, assign the packet to this
connection; otherwise, drop the packet.

The last check is important because it preserves the opt-in property that we already
noticed as important and implemented in Refector: corrupt packets can be recog-
nized as belonging to an error-sensitive connection, but they will never be assigned
to it and instead be dropped.

4.3 Implementation

In the following, we will present how to integrate the classification algorithm into a
network system. For our approach, we used the concepts of the Linux kernel’s net-
work stack. Other operating systems that allow modifying the network subsystems
code to hook into will, however, allow similar modifications. We will answer three
main questions:

1. Where in the network stack should the learner and predictor be hooked into?

2. How do we deal with corrupted information in broken packets?

3. What other parts of the network stack need to be adapted for error tolerance?

4.3.1 Integration into the Network Stack

If we want to learn from correct packets, we need two pieces of information: we
need the packet headers’ contents to learn patterns from, and we need to know
which connection the packet belongs to, so we can create a distinct class for each
connection. The latter information is not available at reception time; after all,
one important task of network protocols is to demultiplex incoming packets onto
different concurrent connections. This suggests that learning should occur as late
as possible, when demultiplexing has taken place and it is clear which connection a
packet belongs to. Consequently, the learner sits at the top of the network stack; in a
typical system, this means between the transport protocol and the socket interface,
hooked into the function that assigns payload data to a socket. Conceptually, the
integration of the learner is shown in Figure 4.4b.

In the Linux kernel, hooks in this position already exist to use the Linux Socket
Filter (LSF), a socket-level implementation of the Berkeley Packet Filter [MJ93]:

4.3. Implementation 113

MAC

NET

TRANS

APP

(a) standard

MAC

NET

TRANS

APP

Predictor

Learner

DB

learn

(b) learning

MAC

NET

TRANS

APP

Predictor

Learner

DB

predict

(c) predicting

Figure 4.4 Integrating the classification algorithm into the network stack: In standard behavior
(left), packets are simply passed up the stack and handled by protocols. When using the
classification algorithm, correct packets are passed through the stack (center). Before handing
them over, the pattern from the packet’s headers and its destination (by then known) are saved
to the DB. Corrupted packets (right) are intercepted early on, classified and, as far as possible,
repaired by the predictor, then passed on.

every transport-layer protocol calls sk_filter(), which provides for filter functions
to be called. While we do not add ourselves as a filter function for performance
reasons – LSF is designed to allow user-space programs to hook themselves into the
socket filter, and the resulting context switch overhead and memcopies between user
and kernel space memory, if done for every single packet, is considerable [BBC+04]
– we can add ourselves into the sk_filter() function itself, because every packet
is expected to pass this function.41

At such a late point in the processing, one might think that the protocol headers are
not available any more, because they have already been stripped from the packet
after processing. However, this is not the case in the Linux kernel. Instead, an
incoming packet is saved into an skb_data structure, which is effectively simply an
allocated memory area. Two pointers are set to point to the first byte (data) and
the last byte (end) of the packet, respectively.42 As the packet traverses the stack,
each protocol handler will simply move the data pointer accordingly to always point
to the first byte of the following protocol header. This is more efficient than actually
removing the headers from memory. Such a behavior can therefore be expected to

41Every packet that is destined for a user-space application, that is. If support for other types
of packets is desired that never leave the kernel, such as ICMP messages, their handlers need to
be patched separately.

42This allows using uniform-size memory regions for each packet, regardless of size: the remaining
parts of the skb_data area are simply left unused. Thus, a so-called slab cache, a number of
uniform-size memory blocks that are reused instead of allocated and deallocated every time, can
be used, which greatly increases speed.

114 4. Protocol-Independent Heuristic Header Error Repair

also be used in other operating system network stacks. Thus, if the original value
of the data pointer is saved for later use, all headers are still available. Note that
this assumes that protocol handlers do not rewrite information inside the packet
headers themselves. However, we consider this a reasonable assumption: none of
the standard protocol handlers show such behavior. Furthermore, it would be of
questionable use, because the header area could only be used as temporary memory
area, and such rewriting would open new possibilities for bugs, requiring careful
implementation to not overwrite data that might be needed afterwards.

For the predictor, it is important to intercept the packet as early as possible. In a
typical network stack, this means after the MAC and before the network layer. Con-
ceptually, this is shown in Figure 4.4c.43 The main reason for this is that corrupted
packets can lead to severe problems if they are processed by protocol handlers not
designed for this case. If important information, such as the destination port, is
corrupted, the packet will be either dropped or misassigned.

It is hence beneficial to classify such corrupted packets as early as possible to predict
the correct connection. In the Linux network stack, this can be achieved by hooking
in the netif_receive_skb() function, which all MAC protocol handlers call after
they have finished processing, and in which the next protocol handler to send the
packet to is decided on. Hooking the predictor into this function again makes it
easy to classify and repair the packet. However, at this point, we still need to ensure
that the packet has a good chance to traverse the network stack. Simply bypassing
all protocol handlers might seem appealing, because it both saves processing time,
and we already know which connection the packet most probably belongs to, in any
case. However, this is typically not possible, and cannot be done if we do not know
anything about the used protocols, for two reasons. First, we still need to remove
the protocol headers so that we can send the payload to the socket without headers.
Protocol handlers will do this for us; if we wanted to circumvent them, we would need
to know how much data to strip from the packet. This could be solved by saving the
length of the headers with each connection’s class. This length can be calculated by
subtracting the original value of the data pointer from its final value. However, this
only works if protocol headers have a static length: a typical scenario, but not one we
can guarantee if we do not know the underlying protocols. Second, by bypassing the
protocol handlers, we potentially change the communication behavior by discounting
side effects. These can range from acknowledgments to flow or congestion control.

4.3.2 Repairing Header Contents

To send corrupted packets through standard protocol handlers, we need to make
sure that vital information is repaired. In our predictor, we do this by applying the
expected values of a connection class onto the packet. That is, if bits marked by the
mask as static differ, they are written into the packet from the value. Again, this
can be done with binary operations,

packetrep = (value ∧ mask) ∨ (packetcorr ∧ ∼mask) (4.4)
43In a full SoftMAC system, where all MAC handling is done in software, it would be possible

and desirable to intercept the packet even before MAC handling.

4.3. Implementation 115

where ∧ denotes a bitwise AND operation, ∨ a bitwise OR, ∼ a bitwise NOT,
packetcorr the incoming corrupted packet and packetrep the repaired packet.

Of course, this does not guarantee that all important bits are repaired, only static
bits. However, our assumption in designing the algorithm was that identifying bits
are typically static; hence, we can assume that identification information (addresses,
ports, etc.) can be repaired in this fashion. If, however, one of the protocols imple-
ments sequence numbers and uses them for schemes such as in-order delivery, this
solution will not help. This is a problem that we have to accept and for which our
classification algorithm does not provide any solution. To support such a solution
would complicate the algorithm considerably, since it wold have to recognize header
field behaviors over time without any knowledge about the protocols. The reason we
could implement timestamp and sequence number repairing for RTP with relative
ease is that we knew which fields contained the information. Learning this, on the
fly, without any knowledge about the protocols, while keeping the algorithm fast
and accurate, seems to be a daunting task. However, this problem is smaller than
it might seem at first: of all standard protocols used on the network and transport
layer, only IPv4 and TCP use sequence numbers, and for IPv4, they only serve a
purpose if the nowadays extremely exotic IP-layer fragmentation is used. For TCP,
a protocol whose basic idea is reliable data transfer, the use with a tool whose basic
idea is tolerance to errors is of questionable motivation.

Again, note that error-sensitive connections are out of scope of the question: repair
never occurs in the first place, so problems with repairing those packets are irrelevant.

4.3.3 Protocol Adaptation

The classification algorithm needs to be able to distinguish between correct and
corrupted packets, so that learner and predictor are only used on the appropriate
packets. We can solve this problem like in Chapter 3, by adding a checksumfailed

flag about whether a checksum has failed to the sk_buff structure which contains
per-packet information in Linux. Typically, it makes sense to use the MAC layer
checksum: it is available and has been checked by the time we need to decide whether
a packet should be handed to the predictor, and MAC-layer checksums typically
cover the whole frame (such as in Ethernet [IEEE12a]44 and WLAN [IEEE12b]).
This, of course, requires changing the used MAC layer protocols to set this flag
accordingly, in the same way as for Refector (cf. Section 3.2.3).

In fact, every protocol with checksums needs changes to its code to switch off packet
drops on checksum mismatches and instead set the checksumfailed flag to true.
Once the packet is about to be handed over to the application, the sk_filter then
checks whether the flag is 0 or the SO_BROKENOK socket option is set, and otherwise
drop the packet.

That every protocol using checksums (so, for example, there is no need to change
the IPv6 handler) needs to have its checksum-checking code changed goes somewhat

44While the Ethernet II de-facto standard is used much more widely than IEEE 802.3, both use
the same checksumming behavior and are therefore equivalent for these purposes.

116 4. Protocol-Independent Heuristic Header Error Repair

against the original design of having a protocol-independent solution. However, in
this case, we see no other choice but to compromise and do so. This is indubitably
a weakness of the approach. However, while this means that, for every new protocol
that should be supported, a human needs to check the code and change it accordingly,
we argue that there is still a very significant difference in work involved compared
to implementing protocol-specific heuristic header error repair. Checksum checking
code is often very self-contained and generic. Conversely, creating an error-tolerance
solution for a new protocol requires knowledge about the protocol, analysis, design,
and a much larger change in the code. In this way, a protocol-independent classifi-
cation approach still saves much time and work, and significantly eases the burden
of supporting new protocols.

4.4 Evaluation

In the following, we will investigate the performance of our classification algorithm.
We will answer three questions:

1. How many packets are correctly attributed, and how many are misattributed,
for different cutoff threshold settings?

2. How fast is the implemented algorithm?

3. How fast does the classification algorithm converge, that is, how many correct
packets does it take to produce high accuracy?

4.4.1 Experimental Setup

For the same reasons as given in Section 3.4.5.1, we opted for a simulative approach
to test the algorithm’s performance. To do so, we used a very similar setup as before:
packets were fed into a corruptor, which introduced bit errors, and then handed over
to the classification algorithm for learning or predicting, depending on whether the
packet had had any errors introduced. To distinguish between the two cases, the
corruptor signaled whether a packet had had errors introduced or not, emulating the
behavior of a checksum algorithm which signals this information in a real system.

For the design of the algorithm, we had already created a data set of diverse appli-
cations. To further evaluate the algorithm’s performance, we created a second data
set, because testing on the same data set that was used to design the algorithm can
lead to problems similar to overfitting: the algorithm and its learning procedures
might end up being adjusted for high performance on only this specific data set,
while not delivering the expected performance on others.

Similar to the first data set, this set comprised a large number of different connection
types: web surfing, audio streaming via HTTP web radio, audio streaming via RTP,
video streaming via HTTP, video streaming via RTP, a debian Linux aptitude

upgrade to update the package database and upgrade outdated packages, ICMP

4.4. Evaluation 117

pings, as well resultant DNS lookups. While the use cases were similar to the ones
used in data set 1 (because those are the ones we consider typical use cases of an
Internet connection), we made sure to change specific parameters such as which
radios or videos to stream. Overall, data set 2 comprised 214 connections with
48 268 packets, with many (especially HTML-over-HTTP) connections only having a
single-digit number of packets, while others (especially the video streaming) received
thousands of packets.

As in the RTP evaluation (cf. Section 3.4.5), we used a Bernoulli process to inject
errors to model a binary symmetric channel, investigating the whole BER range from
0 to 0.5 in 0.01 increments. One problem is that at high BERs, virtually all packets
are corrupted, so the classification algorithm cannot learn from correct packets and
cannot produce any meaningful evaluation result. In the RTP case, we solved this
by sending several initial packets error-free to collect information to subsequently
predict fields such as sequence number and timestamp. In this evaluation, with an
algorithm that does not know anything about the inner workings of the protocols it
is expected to classify, two initial packets is not enough. We therefore opted for a
scenario in which the error injection works in a two-step process: first, the corruptor
decides whether to corrupt the packet at all, or to forward it unscathed. We set
the chance of a packet being forwarded without errors to a static 30% in all our
experiments. The remaining 70% then had errors injected according to the specified
BER. We acknowledge that this means that, at very high BERs, we potentially
overestimate the algorithm’s performance, because at such BERs, we cannot expect
to receive any correct packets. Conversely, this setup removes the constraint that
“the first n packets are received correctly”, as in the RTP case. Our setup, with
high burstiness in errors can be seen as modeling a highly variant connection, in
which factors such as strong fading, interference, or sub-par rate adaptation leads to
a large number of corrupted packets, but with intermittent transmission successes.
It could be argued that such a scenario models the real world example of home users
better than an overall unvaryingly high BER, which would typically be the result
of low transmission power or strong path loss due to high distances between sender
and receiver.

As mentioned in Section 4.2, we considered the first 40 bytes of each packet for
classification. Unless otherwise specified, each data point in our evaluation was
the result of 20 repetitions of the experiment. To further increase variance, we
did not send the same monolithic block of 48 268 packets in the same order to the
classification algorithm every time. Instead, we logically split the capture into 214
sub-captures, one for each connection, and varied the starting time for each of those
captures during the experiments, so that the algorithm had to cope with different
combinations of concurrently open connections at any given point during each of
the experiments. Furthermore, we used the same approach with our original data
set that was used during algorithm design (data set 1). However, in the following,
unless otherwise specified, the results presented will be from evaluation on data set
2, for the reasons given above.

118 4. Protocol-Independent Heuristic Header Error Repair

4.4.2 Classification Accuracy

We will now examine the accuracy of the classification algorithm described in Sec-
tion 4.2. Two questions will be the main focus of this section: (1) How many packets
can be correctly assigned to the application they belong to, and (2) how many pack-
ets are incorrectly assigned? Note that due to the cutoff threshold, the two questions
are not simply two sides of the same coin: a packet can be either assigned correctly,
misassigned, or not assigned at all because the classification algorithm refused to
come to an assignment decision. To further investigate especially this effect on the
classification performance, we will investigate different settings for the algorithm’s
thresholds θs and θcs. When we present the results, we will focus on the performance
for error-tolerant streams, which we define as the audio and video streams in the
data sets. That means that our correct assignment and misassignment rates are
calculated from the number of packets that belong to those connections, not from
the total number of packets in the data set. The reason for this is that classification
accuracy for error-sensitive streams is not important in itself, because error-sensitive
streams will not have any corrupted packets assigned to them, neither correctly or
incorrectly. Hence, misassignment rate is always 0 for those streams. On the other
hand, those streams indirectly influence the performance of the algorithm, and as
such, their presence is important: We need to create classifiers for each stream,
error-tolerant or not, so that a corrupt error-sensitive packet has a high chance
to be correctly recognized as such, reducing the misassignment rate. If classifiers
for error-sensitive connections did not exist, every corrupted packet would only be
matched against classifiers for error-tolerant connections, and corrupt error-sensitive
packets would have no chance to be classified correctly. Conversely, the existence of a
sizable number of error-sensitive connections increases the risk that an error-tolerant
packet will be misassigned: the higher the number of managed classes, the larger the
risk that a misassignment occurs. While a misassignment of an error-tolerant packet
to an error-sensitive connection has no negative repercussions for that connection
(corrupted packets assigned to error-sensitive applications are dropped), the result
is a packet loss for the application it was destined for, and a reduction in accuracy.

Correct assignment rate is hence calculated as the number of packets from error-
tolerant connections that were assigned to the correct application, while misassign-
ment rate is calculated as the number of packets (both error-tolerant and error-
sensitive) that were incorrectly assigned to an error-tolerant stream and therefore
lead to a packet being sent to the wrong application. Note that this means that
our misattribution rates are indeed higher than if we had considered packets from
all streams: since error-sensitive connections, by design, cannot have any misassign-
ments (because corrupted packets assigned to them are dropped), their misassign-
ment rates are always 0 and would decrease the overall misassignment rate.

Figure 4.5 shows the classification algorithm’s accuracy for both data sets. Error
bars in the graphs denote minimum and maximum values for that data point during
our evaluation, not confidence intervals. Presented are numbers for settings of θs =
θcs = 0.2, 0.3, 0.4, as well as a “semi-dynamic” threshold setting of θs + θcs = 0.35.
In this last case, the cutoff threshold in the combined scoring phase is more lenient
if the score in the normal scoring phase was low and indicated a good match. The

4.4. Evaluation 119

0.0

0.2

0.4

0.6

0.8

1.0

C
o

rr
e

c
t

(f
ra

c
ti
o

n
)

Both ≤ 0.4

Both ≤ 0.3

Both ≤ 0.2

Sum ≤ 0.35

10-6

10-5

10-4

10-3

10-2

10-1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

M
is

a
s
s
ig

n
e

d
(f

ra
c
ti
o

n
)

Bit Error Rate

(a) Data set 1 (also used during design phase)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
c
t

(f
ra

c
ti
o
n
)

Both ≤ 0.4

Both ≤ 0.3

Both ≤ 0.2

Sum ≤ 0.35

10-6

10-5

10-4

10-3

10-2

10-1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

M
is

a
s
s
ig

n
e
d

(f
ra

c
ti
o
n
)

Bit Error Rate

(b) Data set 2 (newly created for evaluation phase)

Figure 4.5 Classification accuracy for all (error-tolerant) streams. Note the linear scale in the
upper and the logarithmic scale in the lower subgraphs. Performance differences between the
two data sets are negligible. Stricter cutoff thresholds θs and θcs effectively present misassign-
ments. Conversely, they lead to earlier drop-offs in correct assignments, opting on the safe
side and dropping many packets that would have been correctly assigned.

120 4. Protocol-Independent Heuristic Header Error Repair

two data sets show only negligible performance differences: correct assignment is
minimally lower and misassignment rate minimally higher in data set 2, but only
to very small degrees. This shows that the algorithm, which was designed using
data set 1, has not been overspecialized by mistake and also works well for other
scenarios.

The cutoff thresholds, unsurprisingly, show a similar influence on performance as
the ones used in the RTP library implementation. As thresholds become stricter,
misattributions can be effectively prevented. At a threshold of 0.4, misattributions
occur at rates between 10−4 to 10−3 until BER is in excess of 30%. A threshold
of 0.3 already decreases the misassignment rate by 1–2 orders of magnitude, to the
point where in some test series, we did not witness any misassignments at all. At
a threshold of 0.2, misassignments are an exceedingly rare occurrence. In all ex-
periments, data points, and repetitions, we did not witness a single misassignment
at that threshold. Conversely, stricter thresholds reduce the rate of correct assign-
ments earlier on (at lower BERs), because they err on the side of caution more
often and drop packets that would have been assigned to the correct application.
However, even at the strict cutoff of 0.2, packet drops only start occurring at about
6%. The semi-dynamic threshold, while also preventing misattributions, keeps the
correct assignment rate at top performance up to about 8%.

One interesting effect that can be seen in the results, though it is not very clear
and of rather small magnitude, is that, up to BERs of about 0.3, the misassignment
rate in fact decreases very slowly, before picking up again. This is because, at higher
BERs, scores increase on average, leading to more packets being dropped, which also
means that more misattributed packets are dropped. When BERs reach extremely
high values, the number of correctly assigned packets becomes so low that even a
small number of remaining misattributions increases the fraction of misassignments
and offsets this effect.

These results are very promising: without having any domain knowledge about the
employed protocols, we were able to design a classification algorithm that correctly
assigns virtually all packets up to a BER of about 8%, while preventing any misas-
signments. To further stress-test the algorithm, we then designed a scenario in which
we took nine YouTube RTP streams, let them run concurrently, and investigated
the classification performance. The idea is that the connections should be as hard to
distinguish between themselves as possible, which is assured by the fact that all these
streams are of a the same communication type, from the same provider. The results
are shown in Figure 4.6, and comparison to Figure 4.5 shows a somewhat surprising
result. While correct assignment rates are somewhat lower, showing a decrease from
the perfect 100% at BERs between 4% and 7% the misassignment rates are, in fact,
also lower. This, however, is mostly due to the fact that the maximum concurrent
streams in this scenario was 9, while in the larger data sets, more concurrent streams
were possible and regularly happened. With an increasing number of streams and
hence classifiers, the risk of misassignments increases. Overall, however, it can be
seen that even in such a somewhat arbitrary scenario (we do not expect users to
watch 9 videos at the same time), the classification algorithm still performs very
well.

4.4. Evaluation 121

0.0

0.2

0.4

0.6

0.8

1.0

C
o

rr
e

c
t

(f
ra

c
ti
o

n
)

Both ≤ 0.4

Both ≤ 0.3

Both ≤ 0.2

Sum ≤ 0.35

10-6

10-5

10-4

10-3

10-2

10-1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

M
is

a
s
s
ig

n
e

d
(f

ra
c
ti
o

n
)

Bit Error Rate

Figure 4.6 Classification for nine concurrent YouTube streams. Even in such a stress-test
scenario with a large number of very similar streams, classification stays highly accurate and
comparable to the less artificial case presented in Figure 4.5.

4.4.3 Classification Speed

We have shown that the classification algorithm is accurate to a very high degree,
even under moderately high BERs. However, for the algorithm to be practical, we
also need to show that its performance is able to keep up with packet rates typically
expected in wireless networks, preferably without producing a large computation
overhead. The lightweight design of the algorithm suggests that this should be the
case; in this section, however, we will investigate the performance in a quantitative
manner.

For this, we will distinguish between learner and predictor performance. There are
two main reasons for this. First, every packet only traverses either the learner (if it
had a correct checksum) or the predictor (if it had a checksum mismatch). At low
BERs, most packets will pass the learner; as BER increases, the weight will shift
over to the predictor. Second, learner and predictor have very different complexities:
All the learner has to do (after the initial setup of a class for a connection) is to
look up the class for the connection, and recalculate the mask. The predictor, on
the other hand, has to match packet contents against each open connection, and in
case combined scoring is done, also against combinations of connections.

For this evaluation, we ran the algorithm on an Intel Core 2 Duo CPU at 2.66 GHz.
Note that the algorithm is single-threaded and only used one core. The times pre-
sented are the computation time of the learn and predict functions. Initialization,
such as memory allocation for mask and value bitfields for new connections, is not
accounted for. However, since such an initialization only occurs once per connection,

122 4. Protocol-Independent Heuristic Header Error Repair

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

P
ro

c
e

s
s
in

g
 T

im
e

p
e

r
P

a
c
k
e

t
[n

s
]

Number of concurrent connections

Figure 4.7 Processing time in the learner is on the order of nanoseconds and increases linearly
with number of open connections. This linear increase is due to the use of linked lists in the
implementation and could be further reduced to a static overhead by using a different data
structure or lookup mechanism.

it is less relevant for the overall speed of the algorithm. The results presented here
classified packets based on the first 40 bytes and used thresholds of θs = θcs = 0.2.

Figure 4.7 shows the performance of the learner. As can be seen, learning from a
packet can be done within nanoseconds. The linear increase with increasing number
of connections is due to the current implementation, in which the classes are kept in a
linked list that takes O(n) to traverse. The implementation could be changed to have
an O(1) lookup, for example, by using a hash table, or, even more efficiently, having
a pointer in the kernel’s socket structure that directly points to the class of that
connection. Since learning happens immediately before the packet is handed over
to the application, the socket is known and could hold this additional information,
which would eliminate even the static hashing overhead. Nevertheless, the current
implementation already shows that learning is so fast that this is not a pressing
issue.

Prediction speed is, as expected, lower. Figure 4.8 shows processing times of the
predictor; note that variance of the results was so low that error bars are practically
indiscernible. The predictor’s performance is governed by two influences – number of
open connections and BER – and is significantly higher. Still, even at a high number
of concurrent connections, processing time stays in the low microsecond range. This
time, the linear increase in processing time with increasing number of connections is
not chiefly caused by the lookup in a linked list. Since the predictor has to calculate
scores for each packet for all open connections, this linear increase is expected. That
the increase is linear and not quadratic proves our conjecture we discussed when we
introduced combined scoring: given the right threshold, the O(n2) complexity can
be avoided. Interestingly, the processing time decreases with increasing BER. The
reason is that, the higher the BER, the higher, on average, scores are (because there
tend to be more non-matching bits). This means that more connections are ruled out
as suitable candidates during phase 1 of the algorithm as described in Section 4.2.2,
which in turn means that fewer connections have to be considered for combined

4.4. Evaluation 123

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35 40 45

P
re

d
ic

ti
o

n
 T

im
e

p
e

r
p

a
c
k
e

t
[µ

s
]

Number of concurrent connections

BER=0
BER=0.1
BER=0.2
BER=0.5

Figure 4.8 Processing time in the predictor is on the order of microseconds and increases
linearly with number of open connections. Processing time decreases as BER increases because
at high BERs, more streams are ruled out as candidates during step 1 of the classification
algorithm.

scoring. Note that the data points for BER = 0 are a synthetic test: to create these
results, we injected uncorrupted packets into the predictor after learning from them.
However, predicting packets with a BER of 0 (that is, error-free packets) is, in itself,
not an unrealistic case. Failing checksums, the sign that a packet is not to be trusted
and needs to be predicted, only denote errors somewhere in the packet. Those errors,
however, might be in areas not considered by the algorithm, for example, in the later
parts of the packet containing the payload, while the considered areas are completely
error-free.

To put these numbers into context, we provide some approximations on the average
inter-arrival time in 802.11 when the channel is fully utilized. We do this by taking
the channel throughput, deciding on two scenarios that differ by packet size, and
dividing those sizes by the throughput. Table 4.1 shows some examples for 802.11n
and 802.11g. Note that the nominal speeds of 600 Mbit/s and 54 Mbit/s are un-
reachable in practice: they merely denote the peak speed that can be reached while
a data frame it sent, and do not take into account overhead due to interframe spaces
and contention periods. The other speeds are examples taken from measurements
by Pefkianakis et al. [PHW+10] in the case of 802.11n and our own measurements
in the case of 802.11g. Even using 3x3 MIMO, channel bonding to increase the
bandwidth, and frame aggregation to combine several packets as subframes into one
aggregated frame, Pefkianakis et al. were only able to reach 180 Mbit/s under very
favorable conditions. In most of their scenarios, they could barely reach 100 Mbit/s,
often significantly less. The frame sizes that we chose stem from the sizes used in our
own measurements: an overall packet size of 112 bytes is equivalent to a payload size
of 50 bytes in Figure 2.8 on page 31, and 1532 equivalent to 1470 bytes. The differ-
ence of 62 bytes is due to packet headers, since Figure 2.8 denotes application-layer
payload size, while Table 4.1 denotes MAC-layer frame sizes.

At first glance, Table 4.1 seems to suggest that an 802.11n network at full through-
put can potentially overwhelm the predictor while sending many small frames. For

124 4. Protocol-Independent Heuristic Header Error Repair

802.11 standard Throughput (Sub-)Frame size
(on MAC layer)

Avg. time between
(sub-)frames

802.11n

600 Mbit/s
1532 bytes 19.5 µs
112 bytes 1.4 µs

180 Mbit/s
1532 bytes 64.9 µs
112 bytes 4.7 µs

100 Mbit/s
1532 bytes 116.9 µs
112 bytes 8.5 µs

802.11g
54 Mbit/s

1532 bytes 216.4 µs
112 bytes 15.8 µs

21 Mbit/s 1532 bytes 69.6 µs
1.3 Mbit/s 112 bytes 657.3 µs

Table 4.1 Estimation of average time between two frames. The 802.11 numbers assume
frame aggregation and hence give the average time between two subframes. 600 Mbit/s and
54 Mbit/s denote nominal maximum rate throughput, which is impossible to achieve in practice.
The other 802.11n throughputs are suggested by results in [PHW+10], while the other 802.11g
throughputs are taken from our own measurements, presented in Figure 2.8 on page 31.

example, at 180 Mbit/s, the average interframe time is 4.7 µs. The results presented
in Figure 4.8 show that we can only support approximately 30 concurrent connec-
tions at a BER of 10%, and about 25 connection if the BER is lower. However, note
that to even reach such high throughput and consequently low average inter-frame
times, the frame error rate must be very low. Therefore very few packets will be
processed by the predictor. Most will be processed by the learner, which has a much
lower processing time. However, even if the error rate were to reach 25%, the aver-
age time between frames passed to the predictor would quadruple to, for example,
18.8 µs for the case of 100-byte frames at 180 Mbit/s.

In more challenging situations with higher error rates, rate adaptation will increase
robustness, which will decrease throughput. Consequently, the average time between
frames will increase. Therefore, under any but the most unfavorable circumstances,
our classification algorithm will be able to keep up with 802.11n networks, and
comfortably so when 802.11g rates are used.

4.4.4 Classifier Convergence Speed

So far, we have shown in the evaluation that our classification is fast and accurate.
However, one requirement posed for our algorithm was that it is fast to adapt to
changing conditions; most importantly, fast to create effective classifiers for newly-
opened connections. The question of how soon a classifier for a new connection
is to be fully trusted also influenced our decisions to introduce combined scoring,
and when to use it. Hence, we now will have a deeper look into how fast classifiers
converge, that is, how many packets it takes for a classifier to become stable and
trustworthy.

4.4. Evaluation 125

-0.10

0.00

0.10

0.20

0.30

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

M
a

rg
in

Number of Packets for Learning

Figure 4.9 For all connections from data set 1 with more than 100 packets, a variable number
of packets was used for learning, then all subsequent packets were corrupted with a BER
of 0.1. Metric was the difference between the score to the correct connection and the best
non-correct score. If this value was below 0, a misattribution had occurred. Whiskers denote
minimum and maximum values. After only 4 packets, the classifiers had converged to the point
that misattributions did not occur any more. After 7–10 packets, the results were virtually
indistinguishable from setups with 100 learned packets.

For this evaluation, we took the first n packets from each connection in data set 1 that
had at least 100 packets and used them to train the classifiers by injecting them into
the learner. Afterwards, we took the remaining packets, corrupted them and injected
them into the predictor. We then investigated how reliably the classifiers worked
in identifying packets correctly. To get a deeper insight than the binary decision
between correct and misassignment, we calculated for each packet the difference
between the score for the correct class (that is, the one that packet needs to be
assigned to for correct assignment) and the lowest score for an incorrect connection.
If this difference is negative, then misassignment has occurred; if it is positive, then
the assignment was correct. We investigated this metric for different BERs. As a
representative example, we show the results for BER = 0.1 in Figure 4.9.

The relative behavior of the results does not change with BER. The main change
is that the difference decreases roughly proportionally as BER increases, or, more
figuratively speaking, the barrier “rides up”: The classes still converge at the same
speed (unsurprisingly, because the learner only uses uncorrupted packets), but it
takes more learned packets before misattributions can be ruled out, until at some
point, the BER is so high that misattributions occur regardless of number of learned
packets, and can only be prevented by thresholds and combined scoring.

This might raise a question: if we do not see any misattributions at all after only
4 packets, why do we not simply make our classification algorithm drop packets for
connections that have fewer than 4 learned packets and are unreliable? Would this
not be a more reliable and more efficient way to prevent misattributions than using
combined scoring, which, as can be seen in Figure 4.5, indeed does not fully prevent
misattributions without cutoff thresholds that, conversely, lead to many packet drops

126 4. Protocol-Independent Heuristic Header Error Repair

at high BERs? Sadly, this is not possible because new connections open regularly,
and those connections can produce corrupted packets. Since we do not know what
connection a corrupted packet belongs to when it enters the system (which is the
reason why the prediction algorithm exists in the first place), we have to deal with
corrupted packets that might belong to classifiers that are not yet fully trained.
However, the results from this evaluation answer the question from Section 4.2.2
that we promised to answer later on: why the seemingly arbitrary number of 10
learned packets, below which we apply combined scoring? After 10 packets, the
classifier has converged to a point that it can be considered so good to be almost
indistinguishable from classifiers with more learned packets.

4.4.5 Summary

By now, we have shown that our algorithm fulfills the requirements laid out in
Section 4.1. The algorithm was designed to work on streaming data (requirement
2) and has ways to set cutoff thresholds that have shown themselves to be effective
at reigning in misattribution before (requirement 3). While we have not explicitly
gone into the details of the implementation, it does fulfill requirement 6 and works
without using floating-point arithmetic.

In the evaluation, we have further investigated the performance of the algorithm
with regards to the remaining requirements. The algorithm is indeed effective (re-
quirement 1). With the right parameterization, misattribution can be effectively
prevented, while virtually all packets are assigned to the correct application up to
BERs rates of 7%-10%. This means its effectiveness is similar to the one presented
in Section 3.4, but it works protocol-independently and does not need any domain
knowledge about the protocol headers that it uses for classification, learning all sig-
nificant contents by itself. Furthermore, it does so very quickly (requirement 4). It
only takes few packets to construct an effective classifier. After learning from 10
packets, the classifier has converged to a pattern that is as effective as after 100
packets and more. Finally, due to its use of binary operations during the classifica-
tion process, it is also extremely fast (requirement 5) and can easily keep up with
typical wireless connections. Overall, we consider this algorithm a very good match
for the problem statement.

4.5 Classification via Extrinsic Factors: Size and Inter-

Arrival Time

While the classification algorithm that we presented fulfills all the laid out require-
ments as it is, we considered some extensions to it during the design phase, especially
while it was still unclear whether packet classification purely based on packet con-
tent, as presented in this chapter up to this point, would be able to perform as
required.

4.5. Classification via Extrinsic Factors: Size and Inter-Arrival Time 127

In the following, we will present our investigation into the behavior of what we
termed extrinsic factors. Those factors are extrinsic in the sense that they are not
contained in the packets themselves; they are not part of the transmitted data itself.
Two such factors, and the ones we focused on, are size and inter-arrival time.

The main motivation for this work was an observation that streaming data exposes
a specific communication behavior different from other data transmissions. This is
in its purest form seen in audio streaming scenarios, such as Internet live radios or
VoIP communications. Applications, or the network stack for them, typically try
to aggregate enough data to send large packets, because this reduces the overhead
introduced by protocol headers. On the other hand, streaming data needs to be
sent in a timely manner to not arrive at the receiver too late to be of use. This
is especially a problem in live audio scenarios: audio data can be compressed well
enough to be comparatively small, and as such, a single large packet could contain
more than the 500 ms of audio, which are considered the upper limit to delay [ITU03],
after which the delay renders the connections nearly unusable. Considering that
quality starts to suffer at delays above 150 ms [ITU03], and these are introduced by
intercontinental transmission delays alone, most audio codecs and applications send
packets in much shorter time intervals to reduce delay due to the application. For
example, AMR is designed to use 20 ms intervals [ETSI00]. This means that audio
streaming connections should show very specific packet inter-arrival times: every
20 ms, a packet for a connection should arrive. Additionally, unless the used codec
uses adaptive bit rates, all packets should also have the same size, because they
each contain data for exactly 20 ms. The idea therefore was to learn a “footprint”
of typical packet sizes and inter-arrival times for every connection.

This idea is not completely new. Statistical analysis of traffic to identify connection
types has been investigated in recent years. However, there are some fundamental
differences between those approaches and ours. First, such solutions typically try
to recognize traffic belonging to a certain type of traffic, such as mail traffic, web
traffic, or SSH traffic [MZ05, CDGS07], or to recognize unusual behavior patterns
for connections of a certain type to, for example, recognize HTTP or SSH tun-
nels [DCGS09]. Furthermore, these classifiers generally require offline training on
precollected datasets. In contrast, for our classification, recognizing the correct traf-
fic type is not enough, it is also necessary to distinguish between potentially several
flows of the same type occurring concurrently. We also have to learn new patterns
on-the-fly, and cannot rely on offline learning.

Furthermore, we are much stricter in our classification accuracy requirements. Most
traffic classification approaches are used to do traffic shaping or filtering at the back-
bone or edge router level; in those cases, occasional misclassifications are acceptable.
For example, the above-cited works only produce hit ratios (correct classifications)
of 80–99%. A misclassification of even 1%, however, means that such an algorithm
would produce unacceptably high misassignments of packets, at least on its own.
Nevertheless, previous work in the field gave us hope of devising a solution tailored
to our needs.

In the end, we abandoned this classification approach, for two reasons: First, it
turned out that the content-based classification algorithm already performs very

128 4. Protocol-Independent Heuristic Header Error Repair

well in its designed form, and it was questionable whether the additional overhead
introduced by extensions that take into account extrinsic factors would produce
enough improvements to be a worthwhile tradeoff, especially with respect to in-
creased processing time.

Second, the challenges presented in this section, while deceptively simple at first,
turned out to be highly problematic. In fact, we were not able to produce convincing
results in our endeavor.

Thus, in contrast to all other parts of this dissertation, this section documents an
investigation that did not produce directly applicable results. However, the lessons
from this investigation are, in our opinion, too valuable to be disregarded. At the
least, they will serve to give additional insight into the problem faced when dealing
with unreliable information and corrupted data in data communication scenarios,
and are therefore a good match for the overall topic of this dissertation; at best,
they will engender further research in this area and how extrinsic information can
be used for packet classification.

In the following, we will show the problems that we faced with this approach.

Applicability to other types of traffic

From the beginning, it was clear that some connections would not show specific
packet sizes and inter-arrival times. For example, file transfers, web browsing HTTP
traffic, or remote shell connections could all be expected to not show such behav-
ior. File transfers typically use maximum packet sizes to minimize overhead, but
then send data as fast as the connection (and potentially protocol controls, such as
TCP’s congestion control) allows. The same would be the case for image transfers
and larger HTML text pages. While recognizing size and inter-arrival time patterns
in encrypted HTTP connections to identify which server a client is communicating
with has been investigated in much detail [BLJL06, LL06, WCN+14] in security re-
search, those patterns are neither regular nor periodic and can at best be used to
recognize a connection that was footprinted before, not an ongoing connection as
it progresses. For SSH connections, most packets would be small, but their tim-
ing unpredictable. Thankfully, none of these types of connections are error-tolerant
streaming applications.

However, we noticed that the problem is almost as serious in streaming connections.
In video streams, key frames are often large enough not to fit into a single packet
and need to be fragmented. This leads to bursts in which several large packets arrive
with extremely short intervals, finished by a non-maximum-size packet. This packet
can have any size, since it just happens to contain the remainder of the key frame.
There is therefore no way to define a connection-specific packet size. Even in audio
streams, this can become an issue, typically due to variable-bitrate codecs or non-
live audio content in which large amounts of data are sent in the initial buffering
phase of the stream.

Figure 4.10 shows two sets of examples, one with three audio streams and one
with three video streams. The two criteria (size and inter-arrival time) are used

4.5. Classification via Extrinsic Factors: Size and Inter-Arrival Time 129

 0

 100

 200

 300

 400

 500

 0 40 80 120 160 200 240

P
a

c
k
e

t
S

iz
e

 (
b

y
te

s
)

IAT (milliseconds)

stream 1
stream 2
stream 3

(a) Audio

 0

 250

 500

 750

 1000

 1250

 1500

 0 20 40 60 80 100 120 140

P
a

c
k
e

t
S

iz
e

 (
b

y
te

s
)

IAT (milliseconds)

stream 1
stream 2
stream 3

(b) Video

Figure 4.10 Two examples illustrate the problems faced when trying to exploit packet size
and inter-arrival time (IAT) for classification of packets towards streams. The two criteria
are plotted onto the axes. For reliable classification, each stream’s packets should fall into
a distinctive area. However, overlaps are readily visible (e.g., at 40 ms and 200 bytes in
Figure 4.10a and at 0 ms in Figure 4.10b), illustrating problems in the separation.

as dimensions in these 2-dimensional graphs. To properly classify the packets to
their streams, each stream would need to form a class that can be visualized as one
or several two-dimensional areas within the graph, without any overlap with other
stream’s areas. The overlap between the different streams highlights the problem
that reliable separation by these criteria alone is impossible.

This leads us to the second factor that is also visible in the figures, and exacerbates
the problems.

Influence of Jitter

While streams are not completely separable from each other by means of size and
inter-arrival time, such information from a packet can still give hints which connec-
tion a packet most likely does not belong to; it could be used to reduce the number
of possible connections to consider. However, the figures already show that there
are easily recognizable clusters, but also outliers in many locations. The outliers
typically occur in the time domain, which makes sense: packet sizes stay unchanged
during transmission. However, jitter occurs regularly during Internet transmissions,
which is one of the reasons that streaming applications employ buffers to prevent
choppiness. Note that these measurements were done over an Ethernet line, so the
data was transmitted through the Internet over lines that do not have to deal with
collisions. In a wireless scenario, where the channel medium is shared and collision
avoidance with exponential backoffs is in place, jitter can be expected to be much
worse. This further weakens the specificity of the classifiers.

While there are measures to detect and remove outliers from classes, this incurs
additional and non-negligible overhead. Furthermore, there is another effect that
produces even worse artifacts.

130 4. Protocol-Independent Heuristic Header Error Repair

Learning under non-perfect conditions

The goal of our endeavor is to classify corrupted packets. However, we explained
before that we only learn from correct packets, because otherwise we run the risk of
tainting our classifier with wrong data resulting from misassignments. This reason
still stands for the size/inter-arrival time classifier. However, if only some packets are
used for learning, there is no reliable way any more to recognize the inter-arrival time.
Consider a case in which a packet is sent every 20 ms. If a packet becomes corrupted
and is not processed by the learner, the inter-arrival time suddenly appears to have
become 40 ms. If more than one packet is corrupted in sequence, the time increases
further. Even worse, during the initial learning phase, the learner might at first not
even notice that the “typical” inter-arrival time is 20 ms, settling for a multiple of
that value. If we indeed, as we have suggested above, only use the classifier to rule
out impossible connections, we have thus ruled out the correct connection and set
up the main classifier to produce either a misassignment or a packet drop.

Thus, to cope with the problem of several corrupted packets in a row, we might
have no other choice than to keep track of all received packets, corrupted or not: We
would need to keep track of when we assigned a corrupted packet to a connection, so
that the timer for the inter-arrival time can be reset, and the next packet (provided
it arrives at the correct time, see above) can be recognized as belonging to the
connection. However, this again goes against our rule not to have corrupt packets
influence future assignment decisions, and again, this rule exists for a good reason:
if a misattribution occurred, the inter-arrival time timer will be reset at the wrong
time, and until the next correct packet is received for a stream, resynchronizing it,
all expected arrival times will be off.

Alternatively, we could not only consider the base inter-arrival time, but also mul-
tiples of it: so if the inter-arrival time is 20 ms, then 40, 60, 80, . . . ms will also be
acceptable. This, however, further waters down the already low specificity of the
classifiers.

Separability of concurrent streams

Compared to all these issues, this one seems almost small in comparison. However,
compared to the others, it is less practical and more conceptual, casting another
problematic light on the approach. If the inter-arrival times for two streams are
not relatively prime to each other (and, depending on the severity of jitter, even if
they are), the expected reception times for a packet for both streams will overlap
regularly. Unless packet sizes for the two streams are so specific and different that
they can be separated by that alone, the algorithm will not be able to decide which
packet a connection belongs to.

Again, if the size/inter-arrival-time classifier is only used as a prefilter to the con-
tent classifier, reducing the number of eligible classes, this effect is not too serious.
However, using a potentially complicated algorithm (creation of classes from fuzzy
input, outlier removal) as a prefilter to an algorithm that has shown to be fast and
accurate raises the question of whether this endeavor is worthwhile.

4.6. Conclusion 131

4.6 Conclusion

In this chapter, we presented a novel solution that goes above and beyond what
Refector has already achieved. We could show that it is possible to design an algo-
rithm that can classify packets, assigning them to the correct connection, even under
header errors, when the connection identification information is broken, without hav-
ing any understanding about the protocols that are used to carry that information.
Without any prior knowledge, the algorithm recognizes parts of packet headers that
are significant to the connection assignment decision, learns these patterns online
without any necessary off-line training, and can assign corrupted packets correctly
with a very high probability, even under strong error conditions.

For example, given the right parameterization, almost all packets can be correctly
assigned up to (extremely high) BERs of 7–9%, while completely preventing any
incorrect assignments. Furthermore, the algorithm is very fast, both with respect to
its runtime performance, which can easily keep up with current WLAN speeds, and
with respect to convergence of newly learned patterns, where it only takes roughly
10 uncorrupted packets to produce a highly accurate classifier.

While we were less successful in creating an algorithm that takes into account extrin-
sic information (packet sizes and inter-arrival times), we can safely say that, given
the mentioned results, such an algorithmic extension to our classifier is not even
necessary. The results achieved by content classification produce such an accurate
classification on their own that it is questionable whether the considerable overhead
that we expect classification of extrinsic factors would introduce could offset the
potential marginal benefits.

Overall, we consider the results of this chapter fascinating, and a very interesting
culminating point of our research into error recovery for Internet protocols that
surpassed our initial experiences significantly, to the point where we feel that we
are at a point at which these results are well-rounded. For the last main chapter
of this dissertation, we will therefore leave the field of implementing error recovery,
and instead focus on supporting it, by solving a fundamental practical problem that
stood in the way of applying header error recovery in WLAN, the wireless access
technology that is by far most-used by end users.

132 4. Protocol-Independent Heuristic Header Error Repair

いっ

一
すん

寸
さき

先は
やみ

闇

One inch ahead is darkness.

—Japanese Proverb5
OFRA: Rate Adaptation for 802.11
Networks Without Acknowledgments

In the previous chapters, we focused on creating solutions to introduce error toler-
ance into the network stack to recover from errors in headers. We could show that
such solutions are both feasible and highly effective. While the approaches were
designed to be as independent of the underlying MAC and PHY as possible, we
did use 802.11 as our application scenario, due to its widespread use for wireless
communications.

However, we deferred a detailed discussion on how to use heuristic header error re-
covery in 802.11 until now. Previously, we simply mentioned that we would use the
802.11e [IEEE05] extension that allows us to send frames without acknowledgments.
We also explained how to send frames with and without acknowledgments concur-
rently, if need be. However, we did not take into account the fundamental challenge
that current state-of-the-art rate adaptation algorithms have with such No-ACK
traffic. Since these algorithms rely on ACKs as feedback that informs them about
current channel conditions, none of them will properly manage such traffic. Instead,
they either react slower or not at all to changing channel conditions (depending on
the amount of ACKs created by concurrent traffic that does not use No-ACK), or
will interpret the lack of ACKs from No-ACK frames as frame losses and reduce the
rate until the lowest rate is reached.

This is obviously undesirable. Not only does it massively reduce throughput, since
only the slowest rate is used. It also increases the time every frame occupies the
channel, and hence the latency of the transmission. This motivates our design
of a novel rate adaptation algorithm that can properly adapt rates even when no
ACKs are received. Instead of ACKs, we use special feedback frames that convey
information about the channel, and which are only sent on-demand, that is, when
channel conditions change significantly. One of our additional requirements for this

134 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

algorithm is that it should also perform at least on par with current state-of-the-art
algorithms when it comes to standard, ACK-ed traffic, since all error-sensitive traffic
is still expected to be sent with ACKs. We will see that we indeed reach both goals.

The rest of this chapter is structured as follows: We will first take a step back in
Section 5.1 to describe and discuss the solution space. This motivates our decision
to use the No-ACK scheme for error-tolerant transmissions, despite its lack of rate
adaptation support. In Section 5.2, we will introduce the concept of on-demand
feedback. We will explain in detail how modulation and coding influence error rates
and throughput in wireless systems, with a focus on 802.11, and how we can use
this knowledge to decide when to send feedback. Finally, we will explain how to
send this feedback and introduce the concept of feedback frames. We will discuss
related work in Section 5.3 and shortly explain the basic building blocks of our
implementation of OFRA in the ns-3 [LH06, HRFR06, ns3] network simulator in
Section 5.4. In Section 5.5, we will evaluate the performance of OFRA in detail
against several state-of-the-art rate adaptation algorithms with respect to various
metrics. We will discuss some possible extensions to OFRA in Section 5.6 before
concluding in Section 5.7.

5.1 Introduction and Motivation

Before we focus on the problem of creating a rate adaptation algorithm that supports
No-ACK traffic, let us take a step back and look at the bigger picture. Sending error-
tolerant traffic with disabled ACKs by employing the 802.11e extension is not the
only conceivable option. We will use this introduction to comprehensively discuss
all sensible choices for ACK schemes. This gives us the possibility to check whether
there is a more suitable scheme that can support the requirements of both error-
sensitive and error-tolerant traffic well, and that is feasible to implement in 802.11.
The results will show that there is no such scheme, and suggest that it is indeed
best to use No-ACK for error-tolerant transmissions.

To do so, we will start with an elementary discussion on the role of ACKs in data
and especially wireless communications. We will discuss the semantic meaning of
acknowledgments, and show different ways ACK schemes can be set up. Afterwards,
we will discuss the conceptual advantages and disadvantages of each scheme, as well
as the practical and technical feasibility to implement each scheme in 802.11.

5.1.1 The Role of ACKs in Data Communications

As seen in the preceding chapters, our error tolerance concepts envision a use pri-
marily in wireless networks. This is due to the comparatively high error rate in
wireless networks compared to wired networks, in which bit errors are exceedingly
rare, and packet loss is more commonly due to congestion of links. This high BER
motivates the use of ACKs in IEEE 802.11 [IEEE12b] networks. The type of ACKs
used there is the standard (non-negative) case: if a frame was correctly received,

5.1. Introduction and Motivation 135

an ACK is sent. Otherwise, the receiver stays silent. At closer inspection, such
an acknowledgment scheme conflates three outcomes into two reactions (as do most
ACK schemes). For every frame, there are three possible outcomes at the receiver:

Case 1: The frame is received and correct (checksum matches).

Case 2: The frame is received, but with errors (checksum does not match).

Case 3: The frame is not received at all.

802.11 conflates cases 2 and 3 into the behavior “do not send ACK”. In normal
operation, this makes sense for 802.11. Frames that are received with errors are
considered to be as useless as lost frames. However, as soon as corrupted frames are
assumed more useful than completely lost frames, this conflation is not sensible any
more. It is therefore important to scrutinize whether this differentiation of the two
cases also requires or at least strongly suggests differentiation in the acknowledgment
behavior.

Looking at the three cases, the easiest one to analyze is indubitably Case 3. If a
frame is completely lost, the receiver will not even be aware that a frame destined
for it was sent. This means that it cannot behave in any special way.45 This non-
responsiveness in itself functions as a form of communication. In this special case,
“one cannot not communicate” [WBBJ67], while aimed at human communication,
also holds true for a network protocol. In this case it informs the sender of the
unreliability of the communication: either the frame it sent did not arrive correctly,
or the acknowledgment was sent in response did not arrive correctly (which, while
possible, is much less likely, due the small size and robust encoding of ACK frames
in 802.11).

The next easiest case is Case 1. On reception of a frame, the receiver calculates
the checksum over the received frame and checks whether it matches the received
checksum calculated by the sender before transmission. If the checksums match, the
frame is correct and and ACK response is created.

Case 2 is somewhat more complicated. Note that Cases 1 and 3 are very specific:
Either the frame was lost completely, that is, no correct data was received at all; or
the frame was received correctly, that is, all data in the frame was received. Case 2
runs the gamut between theses cases. Single bit errors in large frames are covered
by this case, as well as almost completely corrupted frames that were just barely
received at all.

After looking at these three cases, we will now analyze several different acknowledg-
ment scenarios and how effectively they work within the concept of error tolerance.
Note that the four cases to be discussed cover all schemes that are both possible

45This is only true for packet-switched networks, in which contention for the channel is the
primary way of access. In situations in which channel capacity is reserved for each communication
partner, for example, in the case of Time Division Multiple Access (TDMA), a receiver will know
when to expect data from a sender, and can consequently answer with a NACK if no data was
received at all.

136 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

Received correctly Received with errors Not received

No change Send ACK Do not send ACK

Always ACK Send ACK Do not send ACK

Never ACK Do not send ACK

Special ACK Send ACK Send special ACK Do not send ACK

Table 5.1 Overview of the behavior of the different ACK choices presented in this section. For
each scheme, the behavior on the three cases “received correctly”, “received with errors”, and
“not received” is shown. Note that because it is not possible to send an ACK when no frame
was received, this covers all possible and sensible cases.

and sensible (also cf. Table 5.1). Because it is not possible to send ACKs when no
frame was received at all, “Always ACK” covers the maximum possible amount of
ACKed frames. Also, because the three possible outcomes are of increasing severity
for communication, it does not make sense to change the order of behavior in the
table (e.g., send no ACK for correct reception, but send one for a reception with
errors); if a lower-severity case skips sending an ACK, a higher-severity case should
not be signaled by sending an ACK.

In the following, we will discuss each of the four approaches with respect to both
conceptual and practical benefits and drawbacks of each approach.

5.1.2 Conceptual and Practical Considerations

No change

This scenario does not change the standard 802.11 behavior. The advantages are
obvious: no change means no additional work in developing a novel solution.

The sender will expect an ACK if the packet was received without any errors, and
no ACK otherwise. This standard behavior is suited for error-sensitive traffic, in
which only a completely correct transmission is of any use.

On the other hand, it is problematic for error-tolerant streams, and is the reason
why we use No-ACK for Refector. Not receiving an ACK because the transmission
was corrupted, the sender will retransmit the frame continuously (up to a sender-
defined maximum). Thus, the channel will be occupied for an inordinate length of
time, which massively reduces overall throughput. It also means that the receiver
might be better off hoping for a correct retransmission instead of employing error
tolerance. If retransmissions arrive regardless, and there is no way for the receiver
to make them stop, waiting for a correct reception is a valid strategy if latency is
not a major concern.

Always ACK

If not sending an ACK on reception of a corrupted frame leads to inefficient behavior,
the next idea might be to stop those unwanted retransmissions. This can be done

5.1. Introduction and Motivation 137

by always sending an ACK when a frame is received, whether correct or corrupt.
This effectively eliminates retransmissions. It has the benefit that throughput is
increased, because instead of using the channel for retransmissions, more data can
be sent.

This behavior provides a decent match for error-tolerant transmissions due to skip-
ping retransmissions. However, this also entails practical problems. First, this mode
is not useful for error-sensitive traffic. Since retransmissions are switched off and
partially corrupted packets are discarded, packet loss rate will be high. The trans-
mission will either be slow since higher-layers have to trigger retransmissions, or
they will break completely.

Furthermore, as we mentioned at the beginning of this chapter, most rate adaptation
algorithms for 802.11 use ACKs to gauge the current channel quality. If an ACK is
received, the assumption is that the channel is able to support the currently chosen
rate without producing errors at that point in time. Always sending ACKs therefore
suggests a higher channel quality to the receiver than is available in reality. This
will lead to overselection (choosing a higher data rate than sensible) by the sender,
which is one of the primary causes of bit errors in the first place. In short, this
scenario will further increase the bit error rate to potentially unacceptable amounts.

Finally, there is no support from the 802.11 standard for such a behavior, so it
would need to be implemented. The main problem with this is that, while rate
adaptation algorithms generally reside in software in the OS, checksum checking
and ACK sending are typically part of the firmware, which is closed-source and
hardware-specific, making it hard to change. In some cases, this functionality might
even be implemented in the hardware itself.

This is done for reasons of efficiency and speed, to fulfill the strict timing require-
ments for ACK sending in the 802.11 standard. The 802.11 ACK scheme assumes
that there is always only one frame outstanding.46 When a frame is sent, the sender
reserves the channel not only for the time it requires to send its frame over the chan-
nel. It reserves additional time comprising the time an ACK frame takes to be sent,
plus a Short Interframe Space (SIFS). This short time (16 µs) accounts for radio
latencies (such as switching from receiving to sending), as well as for calculation
of the checksum itself. Because it generally is impractical to have the whole frame
off-loaded to the OS, the checksum checked there, and the result signaled back to the
network adapter, the checksumming and decision whether or not to send an ACK
are done within the network adapter.

Changing the ACK scheme to also send ACKs if the checksum did not match there-
fore requires firmware rewrites. It also means that no general solution can be pro-
vided; each chipset requires changes to its own firmware. Combined with the fact
that firmwares are rarely publicly available, at least not in source code, it makes this
approach very time-consuming and hard to realize in practice.

46Exceptions from this rule are the Block ACK mechanism. Nevertheless, even Block ACKs have
strict timing requirements, so the arguments given here for normal ACKs also hold true for Block
ACKs.

138 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

Never ACK

Since neither keeping the current ACK scheme nor changing it to send ACKs also
in the corrupted case produces desired outcomes for error-tolerant transmissions, a
third idea is to go the opposite way and send fewer ACKs than in the standard case.
This means never sending any ACKs at all, even if the frame was received correctly.
This behavior is the one provided by the 802.11e No-ACK policy.

This behavior closely mirrors the Always-ACK behavior. For error-tolerant trans-
missions, Never-ACK has the advantage that it prevents retransmissions if a packet
was received, but with errors. However, we need to make sure that this scheme is
not used for error-sensitive transmissions, since there will be no support for retrans-
missions.

Not sending any ACKs will also lead to rate adaptation problems, albeit in the op-
posite direction. Since no ACKs are received at all, most rate adaptation algorithms
will assume that frames could not be sent correctly at the currently chosen rate,
and reduce the rate further and further, down to the base rate. The combination of
lowest sending rate and large numbers of retransmissions for every single data frame
leads to unacceptable performance.

The main advantage of Never-ACK over Always-ACK is its ease of use. The Never-
ACK policy is easy to use and deploy since it is implemented via the 802.11e No-
ACK policy. Support for No-ACK by the standard has an additional advantage.
Because there is no need to send ACKs, the inter-frame timings are also tightened
by the standard for such transmissions. Whereas in an ACK scenario, the sender
reserves the channel for an additional SIFS and ACK, this is not done in a No-
ACK situation. The channel is therefore available earlier for further transmissions.
In good conditions, when frames are rarely lost, No-ACK therefore increases the
capacity of the WLAN channel and the overall possible throughput.

Special ACK

From the scrutiny of these three approaches, it follows that none of them, in it-
self, can provide a satisfying solution for both error-sensitive and error-tolerant
traffic. This is possible, however, with the Special-ACK solution, which extends
the two-state signaling of current ACKs with a tri-state system, in which a special
notification is sent if a frame was received, but with errors. Extensions such as
this are not unheard of. For example, TCP HACK [BLK+01] introduces an addi-
tional TCP option that sends a special header-only checksum with the (TCP-layer)
packet. This allows the receiver to signal corruption in the data portion to the
sender. Maranello [HSG+10] introduces sub-checksums over blocks of the frame, the
match or mismatch of which are signaled back to the sender. From a conceptual
point of view, this seems like the most elegant solution, because it neatly separates
the three cases into three different types of answers.

To support both error-sensitive and error-tolerant traffic with this policy, the fol-
lowing behavior could be implemented. If the special ACK that denotes a reception

5.1. Introduction and Motivation 139

No change Always ACK Never ACK Special ACK

Error-Sensitive
Traffic

unsuited suited suited suited

Error-Tolerant
Traffic

suited unsuited unsuited suited

Ease of Imple-
mentation

easy (default
behavior)

impractical to
implement

easy (support
by standard)

impractical to
implement

Rate Adapta-
tion Support

full support causes strong
overselection

causes strong
underselection

full support

Table 5.2 Tradeoff between the different choices of ACK scheme with regards to error-tolerant
transmissions.

with errors is received for a packet form an error-sensitive connection, a retrans-
mission is sent. If such a special ACK is received for an error-tolerant packet, no
retransmission is triggered.

Furthermore, rate adaptation algorithms should work well with this scheme, since
the “normal” ACK is received under exactly the same conditions as in the standard,
no-change scenario.

However, this solution suffers from the same problems as the Always-ACK approach
with respect to practical feasibility. Introducing additional ACK behavior that is
not mandated by the standard requires rewriting network adapter firmware. This
alone makes this approach impractical. In addition to that, the introduction of a
new type of ACK also means defining a new frame type that is used and needs to
be supported by both parties. This is, in itself, not an insurmountable problem; 47

however, in combination with the necessary firmware rewrite, this approach can be
categorized as the least practical.

5.1.3 Summary

From the previous considerations, it becomes clear that no solution is a perfect fit,
and that there are important tradeoffs. A short overview is given in Table 5.2.

While Special ACK is the most promising concept because it can support error-
sensitive and error-tolerant traffic equally well, it is hampered by its incompatibility
with the 802.11 standard and infeasible implementation overhead. Since all other
concepts only support either one or the other, we will need a combined solution.

For error-sensitive traffic, the standard behavior is indeed the best fit, since the
other two are not suited for such traffic.

With regard to error-tolerant traffic, we can decide between the Always-ACK and
the Never-ACK concept. From the summary in Table 5.2, Never-ACK is clearly

47In fact, we will later see in Section 5.2.3 that such a novel frame type can be very useful and
its implementation is feasible

140 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

better than Always-ACK, simply because of its ease of implementation. Hence, the
decision in Chapter 3 to employ the No-ACK scheme for our heuristic header error
recovery is indeed the best choice among the conceivable ACK schemes.

However, it is also apparent that, while the concept is suited in general, it suffers
from bad performance because of its lack of rate adaptation support. No ACKs mean
no working rate adaptation for virtually all rate adaptation solutions. Without a
working rate adaption, however, the performance will suffer greatly. Hence, we need
to provide a novel rate adaptation algorithm to unlock the full potential of error
tolerance in 802.11.

Note that such a solution will not only benefits error tolerance concepts. It also,
in addition, opens the door for practical use of the No-ACK scheme in 802.11 in
general, which so far has been neglected for reasons of which no rate adaptation
support is not the least.

5.2 Concept

After this decision to use the No-ACK concept for error-tolerant transmission, its
practical downside has to be solved by implementing a novel rate adaptation algo-
rithm. To do so, we have to consider the general challenges that rate adaptation
algorithms face, and solve them within the framework of No-ACK transmissions.

5.2.1 Scarcity of Information and Provision of Feedback

First and foremost, we have to solve the fundamental rate adaptation challenge of
scarcity of information. The adaptation of transmission rate is done by the sender,
because it has to construct the packet and choose the bit rate on the PHY layer.
However, the quality of reception as the deciding factor for transmission errors is
only known by the receiver, because channel effects such as path loss that occur
between sender and receiver are not apparent to the sender. Therefore, some sort
of information transfer is necessary to close the feedback loop and facilitate rate
adaptation.

In standard 802.11 transmissions, ACKs serve as this kind of feedback: if the sender
receives an ACK, it can be sure that the transmission was successful; if it does
not receive an ACK, it can assume that the transmission failed.48 Rate adaptation
schemes that rely on this information are classified as frame-loss based approaches.
Their advantage lies in their simplicity: typical systems already employ ACKs, and
the information whether or not the transmission succeeded is readily available (if
only because it is needed to schedule potential retransmissions). Their disadvantage
is the low amount of information gathered this way: all the receiver knows in an

48The information the sender receives this way is not perfect. On the one hand, it cannot
distinguish between a frame that was received with one or more bit errors and a frame that was
not received at all. On the other hand, it is also possible that the frame was received correctly,
but the ACK was lost.

5.2. Concept 141

error case is that the transmission failed in one way or another. No fine-grained
information about the reception quality is available. For our scheme, because we
decided not to use any ACKs, we of course cannot use this way to transfer the
necessary information.

To gain more detailed information about the reception quality, one popular approach
in proposed rate adaptation schemes is to look at the SNR of received frames. These
SNR-based approaches use the measured reception quality of frames the sender re-
ceived from the receiver to estimate the reception quality of the opposite direction,
that is, of frames that are to be sent from the sender to the receiver. These mea-
surements can be done on ACKs received in response to sent frames, or on received
data frames due to bidirectional traffic (or both). However, this is also not without
problems.

First of all, these schemes assume channel reciprocity (that is, that the frames sent
from A to B witness the same attenuation as frames sent from B to A), which
is not a universally accepted concept. As an example, hardware effects [FZJJ06]
can distort the theoretical reciprocity property [Tai92]. Multiple Input Multiple
Output (MIMO) setups do not follow it at all and need careful calibration to reach
near-reciprocity [BCK03].

Second, since channel conditions change over time, if the last reception was so long
ago compared to the speed of channel quality changes that the conditions changed
significantly (the so-called coherence time), the rate decision is based on stale infor-
mation, and the chosen rate might not at all correspond to the currently optimal
choice. This either leads to choosing a rate that is not robust enough and produces
a high BER (overselection), or to choosing a rate that is far more robust than nec-
essary, reducing throughput (underselection). This is a problem that occurs when
extracting SNR information from both ACK and data frames. Even though ACK
frames have to follow very strict timing rules, note that these only assure timely
sending of ACKs after a data frame. For a sender, however, it is important to
have information from a frame that arrived only very shortly before the rate for the
current frame has to be chosen.

Third, size differences between received and sent frames hamper the comparability
derived from channel reciprocity. In fast-fading situations, short frames can be
affected very differently from long ones, in which some of those effects can average
out.49 Furthermore, relying on ACKs for SNR-based decisions is problematic in
quickly deteriorating channels. In such situations, frames will more likely be received
erroneously or not at all, in which case no ACKs are being sent that could inform
the receiver (via their low SNR) that it should switch to a more robust bit rate,
which can lead to a total breakdown of communication.

Comparing the two approaches, while SNR-based solutions are not without prob-
lems, they still have the substantial advantage that they can provide more fine-

49This averaging out chiefly relies on the method of calculating frame SNR. If the SNR is
calculated over the whole frame, this effect can occur. If, however, only the preamble or preamble
plus beginning of the frame are used to calculate the SNR, as is the case in some hardware
(e.g., [MSA06]), this effect is much less prominent; nevertheless, comparability of SNR between
frames is problematic in a fast-fading scenario.

142 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

grained information. While frame-based approaches are by design limited to very
coarse information, SNR-based approaches merely need to find ways to improve
timeliness and correctness of feedback. Therefore, we will consider such a solution
for our rate adaptation scheme. There is also a practical consideration: one of the
advantages of frame-based approaches is the simplicity of providing feedback, be-
cause standard ACK frames double as feedback. However, since we already decided
to use an ACK-less scheme, this main advantage of frame-based approaches is void.

There is another effect that comes with eschewing ACKs: we cannot assume any
more that we will receive at least some bidirectional traffic. In a standard acknowl-
edged system, even if traffic is unidirectional, we can expect to receive ACK frames
in the opposite direction. Thus, unless we require some amount of bidirectionality in
traffic from the upper layers (a dangerous assumption, because it might not always
hold, and in those cases render our rate adaptation scheme ineffective), we have to
provide feedback without any strong coupling to data transmissions. Therefore, we
cannot use any approach that relies on reciprocity, be it by employing received data
frames or ACK frames.

Instead, we need to provide explicit feedback from the receiver to the sender. Such
a receiver-based approach is not a completely new concept. However, we will see in
Section 5.3 when we discuss related work that none of those rate adaptation algo-
rithms fit our requirements, since most of them either piggyback their SNR feedback
onto ACK frames, or produce impractical overhead due to constant RTS/CTS ex-
changes. Instead, we will explicitly send feedback from the receiver to the sender,
when feedback is necessary because channel conditions change significantly and re-
quire a rate change. From this behavior stems the name of our approach, On-demand
Feedback Rate Adaptation (OFRA).

5.2.2 When to Send Feedback: Choice of Optimal Rates

This “when feedback is necessary” can be quantified, and we will do so in this
section. To do so, we will first analyze in detail how robust different rates are to
errors. In Section 2.2, we explained how errors arise in wireless networks. In this
section, we will quantify how strongly error conditions influence different rates in
802.11. This explanation follows a multi-step approach. First, we will consider the
susceptibility to errors of those modulations used in WLAN. Next, we will add the
influence convolutional coding at different code rates to these results, to give an
understanding of how susceptible different bit rates – which are a combination of
a modulation and a code rate and are hence also termed Modulation and Coding
Scheme (MCS) – are to errors. Finally, we will investigate how those different bit
rates influence throughput over bit error rates, at which point we will be able to
answer our initial question, and arrive at an understanding of when feedback needs
to be sent.

5.2. Concept 143

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 3 6 9 12 15 18 21

B
E

R

Eb/N0 [dB]

BPSK and QPSK
16-QAM
64-QAM

Figure 5.1 Bit error rate vs spectral density for several modulations, given as energy per bit
to noise Eb/N0.

5.2.2.1 Modulation

As a first step, we will look at the four modulations used in 802.11 (BPSK, QPSK,
16-QAM and 64-QAM) on their own, that is, with an implied code rate of 1. One
basic way of measuring modulation performance is by looking at BER against Eb/N0,
the energy-per-bit to noise power spectral density ratio. The main advantage of this
metric is that it is independent of the power spent on symbols, which encode one
or several bits at the same time. In easy terms, if a symbol contains twice as many
bits, it may use double the power and still provide the same efficiency.

Given a certain modulation and Eb/N0, there exist formulas to calculate the BER,
under the assumption of an Additive White Gaussian Noise (AWGN) channel. This
has the added benefit that there is no need to distinguish between the additional
modulations applied afterwards, such as DSSS (802.11b) or OFDM (802.11a/g):
because AWGN is neither time variant nor frequency selective, the noise creates the
same effects for both and keep them comparable. For the same reasons this also
abstracts from the modulation to translate the signal to the carrier frequency, and
therefore does not need to distinguish between different WLAN channels.

Because in BPSK, the binary signals are antipodal, the BER can be calculated
as [Pro85, pp. 144–148, 168]

BER =
1
2

erfc (
√

γ) (5.1)

where γ is the Eb/N0, and erfc is the complementary error function, defined as

erfc = 1 − 2√
π

∫ ∞

0
e−t2

dt (5.2)

For QPSK,the general Phase-Shift Keying (PSK) formula for BER calculation can
be used [Gar07, pp. 257–258]:

BERP SK =

(

1
log2 M

)

erfc

(

sin
(

π

M

)√

γ log2 M

)

(5.3)

144 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

where M is the number of distinct values a symbol can hold, and log2 M therefore
the number of distinct symbols in that modulation. Its result for QPSK shows that
the BER is equal to BPSK’s for the same Eb/N0:

BERQP SK =
1
2

erfc

(

sin
(

π

4

)√
2γ

)

=
1
2

erfc
(√

γ
)

(5.4)

This is because QPSK’s two components are orthogonal to each other, and therefore
provide the same BER as BPSK for equal Eb/N0 [Pro85, pp 168–169].

For the more sophisticated QAM schemes, the formula has to take into account
not only phase modulation, but also amplitude modulation. The BER is calculated
as [CY02]:

BERQAM =
1√

M log2

√
M

log2

√
M

∑

k=1

〈 (1−2−k)
√

M−1
∑

i=0

(−1)

⌊
i·2

k−1
√

M

⌋

·
(

2k−1 −
⌊

i · 2k−1

√
M

+
1
2

⌋)

· erfc

(

(2i + 1)

√

3γ log2 M

2(M − 1)

)

〉 (5.5)

For the two cases used in 802.11, 16-QAM and 64-QAM, this yields

BER16QAM =
3
8

erfc

√

2
5

γ +
1
2

erfc

√

18
5

γ − 3
8

erfc
√

10γ (5.6)

and

BER64QAM =
7
24

erfc
√

γ

7
+

1
4

erfc

√

9
7

γ − 1
24

erfc

√

25
7

γ

+
1
24

erfc

√

81
7

γ − 1
24

erfc

√

169
7

γ

(5.7)

respectively. The detailed calculations are given in Appendix B. Note that for M =
4, Equation 5.5 produces the same result as Equation 5.4, interpreting QPSK as
4-QAM.

However, as can be seen from the results (which are visualized in Figure 5.1), the
value of these results for our use case is limited. This is because the point of view
taken is one of high abstraction. To compare the performance of modulations under
noise, each modulation is assumed to operate under its maximum efficiency η:50

η =
Rb

B
=

M · Rs

B
(5.8)

Eb/N0 (denoted as γ) abstracts from both (frequency) bandwidth B and bit rate Rb

(and symbol rate Rs):

γ =
SNR

η
= SNR · B

Rb

= SNR · B

M · Rs

(5.9)

50Or each modulation at least operates at the same η.

5.2. Concept 145

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 3 6 9 12 15 18 21 24 27 30 33 36

B
E

R

SNR [dB]

BPSK
QPSK

16-QAM
64-QAM

Figure 5.2 Bit error rate vs signal-to-noise ratio for several modulations.

In simple terms, Eb/N0 gives us a metric of performance depending on power con-
sumption. Given an energy budget of e joule and k bits to transmit, the energy
budget per bit is e

k
. With the same Eb/N0, we can, for example, either send k

2

BPSK symbols spending 2 e
k

J on each symbol, or k
64

64-QAM symbols spending
64 e

k
J per symbol. Because the symbols contain a different number of bits, more

energy can be spent on each QAM symbol and still use the same energy budget.
Likewise, the Eb/N0 abstracts from bandwidth: With the same Eb/N0, we can send
a symbol at bandwidth B Hz, taking time t seconds, or at bandwidth 2B Hz, and,
taking advantage of the increased bandwidth, doubling the rate and only spending
t
2

s on the symbol.

In a practical rate adaptation scenario, both bandwidth and bit rate are fixed and
cannot be changed at will. While there are several standardized bandwidths in
802.11 (from 5 MHz over the common 20 MHz in a/b/g to as much as 160 MHz in
the new 802.11ac [IEEE13] standard), switching between bandwidths on-the-fly is
not provisioned for. The standard defines a set of rates, which each have a fixed
bandwidth and bit rate setting. Looking at the four modulations used by 802.11a/g,
Table 5.3 shows that they operate at different bit rates, keeping symbol rate and
bandwidth constant. Finally, while there are schemes to dynamically adapt the

Modulation (Gross) bit rate Bits per symbol Symbol rate Bandwidth

BPSK 12 Mbit/s 1 12 MBd 20 MHz

QPSK 24 Mbit/s 2 12 MBd 20 MHz

16-QAM 48 Mbit/s 4 12 MBd 20 MHz

64-QAM 72 Mbit/s 6 12 MBd 20 MHz

Table 5.3 Modulations as used by OFDM in 802.11a/g. The rates are set up so that the
symbol rate stays constant. This table shows the settings for 20 MHz channels. For other
bandwidths defined in the standard, the bit rate is scaled accordingly to keep the spectral
efficiency η constant.

146 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

x−1 x−2 x−3 x−4 x−5 x−6input

output A

output B

Figure 5.3 The standard k = 7 convolutional code, as used by 802.11. Dashed arrows
denote shift direction of the shit register, solid arrows input to and output from the generator
polynomials. ⊕ denotes exclusive-or, or addition modulo 2. Every time a bit is entered into
the shift register, two encoded output bits are produced.

transmission power and thereby influencing the energy per bit and, consequently,
Eb/N0 [RKZG08,PEG12], this is not used by standard setups on consumer hardware.
With all these parameters fixed, the deciding factor for correct or corrupt reception
of a frame in an 802.11 network are therefore the channel conditions. These can
be quantified by the SNR. By inserting the respective values from Table 5.3 into
Equation 5.9, Equations 5.1, 5.4, 5.6 and 5.7 can be used to calculate the BER given
the SNR. The results are shown in Figure 5.2.

This gives us an intuitive understanding of the strengths of the different modulations.
As the number of bits per symbol increases, so does the susceptibility to errors (cf.
Section 2.2). The higher potential throughput of those modulations is offset by their
requirement for a better SNR to produce the same BER. By applying Equation 5.9,
we can calculate that for the same BER, QPSK requires 3 dB more SNR than BPSK,
16-QAM 6 dB more than QPSK, and 64-QAM 6 dB more than 16-QAM.

5.2.2.2 Coding

However, this does not draw the complete picture. To increase robustness and
to allow more fine-grained steps between performance levels, data is not directly
modulated and sent. Instead, it is encoded in a way that increases robustness and
allows recovery from a certain amount of bit errors. We will now add coding to our
examination.

In 802.11, a type of convolutional coding is used. Convolutional codes transform
inputs of m data bits into output of n code bits, with the overwhelmingly common
case (which will be described here) setting m = 1. They comprise a shift register
of length k, as well as n generator polynomials which define the code rate and
robustness.

As an example, the convolutional code used in 802.11 is given in Figure 5.3. The
length of the shift register is 6. Whenever a data bit is read, the new contents of the
shift register are used as inputs to two generator polynomials, producing two 1-bit

5.2. Concept 147

Net bit
rate

Code
rate

Gross bit
rate

Modulation Bits per
symbol

Symbol
rate

Band-
width

6 Mbit/s 1/2 12 Mbit/s BPSK 1 12 MBd 20 MHz

9 Mbit/s 3/4 12 Mbit/s BPSK 1 12 MBd 20 MHz

12 Mbit/s 1/2 24 Mbit/s QPSK 2 12 MBd 20 MHz

18 Mbit/s 3/4 24 Mbit/s QPSK 2 12 MBd 20 MHz

24 Mbit/s 1/2 48 Mbit/s 16-QAM 4 12 MBd 20 MHz

36 Mbit/s 3/4 48 Mbit/s 16-QAM 4 12 MBd 20 MHz

48 Mbit/s 2/3 72 Mbit/s 64-QAM 6 12 MBd 20 MHz

54 Mbit/s 3/4 72 Mbit/s 64-QAM 6 12 MBd 20 MHz

Table 5.4 The well-known bit rates of 802.11a/g at 20 MHz are a result of a combination of
four modulations with three code rates.

outputs. For each input bit, two output bits are generated, that is, the code rate
is 1/2. The generator polynomials each take a defined subset of the current input
bit (0) and the register bits (1–6) and perform a binary XOR on them. In the case
of 802.11, the first polynomial uses bits 0, 1, 2, 3, and 6; the second uses bits 0, 2,
3, 5, and 6. In binary representation, this is 1111001 and 1011011, respectively. In
the definition of convolutions codes, the generator polynomials are typically given in
octal notation, leading to g0 = 1718 and g1 = 1338.51 This code has been is use since
at least NASA’s Voyager program, which used this code for redundancy [YV85].
To create more fine-grained steps between the code rates of 1/2 and uncoded data
(which equals to a rate of 1) to offset robustness and throughput, a process called
puncturing is used. This means that some of the encoder’s output bits are deleted
in a pattern that still allows decoding. These patterns are given in the form of
puncturing matrices. For the two punctured rates used with 802.11, 2/3 and 3/4,
the matrices are:

P2/3 =

[

1 0
1 1

]

P3/4 =

[

1 0 1
1 1 0

]

(5.10)

This means that, for example, for the rate 3/4 code, for each 3 input bits, the second
output of g0 and the third output of g1 are punctured and not transmitted. By
combining the four modulation schemes presented in the last section with different
code rates as shown in Table 5.4, we arrive at 802.11’s well-known OFDM bit rates.

Due to its widespread use, the error-correcting capabilities of the above convolutional
code and its most-used puncturing patterns are well-researched. The most important
property to investigate the error-correcting capability of a convolutional code is
the free distance, the minimal Hamming distance between encoded sequences. The

51Note that enumerating the polynomials implicitly defines the shift register length; the new bit
is always assumed to be used by at least one generator polynomial, because otherwise the first
element of the shift register would be unused and w.l.o.g., the register could be shortened by that
element. Therefore, the number of digits in binary representation defines the shift register’s length.
The code rate is derived from the number of used generator polynomials.

148 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

output of an error-correcting code is chosen so that this free distance is maximized.
During the decoding, the decoder will try to match the received encoded data to
possible decoded sequences. As long as half or fewer bits are flipped, correct decoding
is possible. If more than half of the bits are flipped, another sequence is closer to the
received sequence than the correct one, leading to a decoding error. The worst-case
error correcting capability is therefore

⌊
dfree−1

2

⌋

. This dfree is found by creating a
state diagram of the convolutional coder, with the contents of the shift register being
the vertices and the possible outputs g0g1 . . . gn the edges [Vit71]. A code’s state
diagram therefore has 2k vertices and 2 · 2k edges (because each shift register state
can only change by shifting in either a 0 or a 1, and therefore only two outputs
are possible from each state). Then, each edge is weighted by the Hamming weight
(number of 1s) in the edge’s label. Finally, the free distance is the minimum weight
of a (simple) cycle through the graph with start and end vertex 0 . . . 0

︸ ︷︷ ︸

k

. This dfree has

to be found, as well as the number of cycles adfree
that have a distance of dfree. This

gives a good approximation of the error-correcting-performance of the convolutional
code; however, for exact analysis, all distances d (and not only the free distance)
have to be known, and their respective ad.

In the general case, the probability that a decoding error occurs in the encoded
stream at distance d and BER ρ is: [Vit71,PT87]

P (d, ρ) =

d∑

i= d+1

2

(

d

i

)

ρi(1 − ρ)1−i if d odd

1
2

(

d
d
2

)

ρ
d
2 (1 − ρ)

d
2 +

d∑

i= d
2

+1

(

d

i

)

ρi(1 − ρ)d−i if d even

(5.11)

where in the even case, it is assumed that the decoder guesses correctly with a 50%
chance if there are d

2
errors. Given a certain input code word, the probability that

any uncorrectable error occurs is therefore [Vit71]

Pe(ρ) =
∞∑

d=dfree

ad · P (d, ρ) (5.12)

However, in most cases, the first few terms dominate the equation to such an extent
that only dfree and possibly dfree + 1 are considered. Such a modeling was used to
calculate the BERs shown in Figure 5.4. Again, as in the case of considering modu-
lation without coding (cf. Figure 5.2), the results match the intuitive understanding
of the tradeoff between speed and robustness. Higher data rates requires less robust
modulation and/or less robust coding. They therefore require a higher SNR to pro-
duce the same BER as more robust rates. There are a few peculiarities though: first,
at very high error rates, the analytical results show crossovers between 18 Mbit/s
(QPSK and rate 3/4) and 24 Mbit/s (16-QAM and rate 1/2) and, to a lesser de-
gree, between 36 Mbit/s (16-QAM and rate 3/4) and 48 Mbit/s (64-QAM and rate
2/3), with the generally less robust modulation and coding producing a lower BER.
However, this crossover disappears at larger chunk sizes than the 36 bits assumed
in the figure; even at such a low chunk size, it only appears at error rates that are
practically useless for transmission of data (beyond 20% BER).

5.2. Concept 149

10-6

10-5

10-4

10-3

10-2

10-1

100

-6 -3 0 3 6 9 12 15 18 21 24 27

C
h

u
n

k
 E

rr
o

r
R

a
te

SNR [dB]

6 MBit/s
9 MBit/s

12 MBit/s
18 MBit/s
24 MBit/s
36 MBit/s
48 MBit/s
54 MBit/s

Figure 5.4 Chunk error rate, that is, the probability that at least one bit error occurs in a
chunk after decoding, for the 802.11’s OFDM bit rates. Chunk size is 36 bits, the smallest size
that ends at a symbol boundary after modulation and coding for all rates. Note how 12 Mbit/s
always outperforms 9 Mbit/s. The crossover between 18 Mbit/s and 24 Mbit/s disappears at
(more realistic) larger chunk sizes.

5.2.2.3 Throughput

However, we still are not done with our observation. BER is an important metric
of bit rates, but while an error-less transmission is desirable, it is not the only goal.
We have seen that slower rates with more robust modulation and coding reduce
error rate and increase robustness in the same channel conditions. However, if we
always exclusively used these rate, communication would be very slow and introduce
considerable additional delay (since frame transmissions take more time). In most
scenarios, a tradeoff between robustness and speed has to be found. Throughput52

is the typical metric employed in this case, and indeed is generally presented as the
main performance metric in literature concerning rate adaptation.

BER is an important factor in the performance of a transmission, but the main
deciding factor is typically considered to be the throughput that is achievable by
the system. Throughput is closely related to the BER, but it also depends on the
size of the data units sent that form a common correctness unit and are considered
corrupted when at least one data bit is flipped (after demodulation and decoding).
These data units are typically called “frames” or “packets”, and their PER depends
on the BER:

PER = 1 − (1 − BER)n (5.13)

52Some literature makes the more detailed distinction between raw throughput (amount of data
that can be sent per time unit) and goodput (amount of data that can be correctly received per
time unit). In the following, we will use the more common definition that argues that “throughput”
in the preceding sense is of little use (because sending faster without any regard to receivability is
always possible by using less robust modulation or coding), and use “throughput” and “goodput”
interchangeably.

150 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

where n is the length of the packet in bits. In standard ARQ systems, one or more
bit errors in a packet lead to a packet error, which leads to the complete packet
being dropped.

From a point of error-tolerant transmissions, this does not seem to be overly relevant;
after all, the whole point of error tolerance is to not discard a packet in the case of
bit errors. However, error-tolerant traffic is generally expected to coexist with error-
sensitive traffic. Furthermore, our rate adaptation scheme should be designed to be
usable and useful even for standard traffic; thus, it will not only be an extension to
Refector, but a stand-alone solution that can be used to great effect in all WLAN
systems. Hence, throughput as a performance metric for rate adaptation is also
important to our approach.

However, it is very hard to analytically derive throughput for certain MCSs, BERs or
PERs, and packet sizes. A naïve approach might make it seem as if the throughput
T were proportional to the PER,

T ∝ PER (5.14)

which in turn would suggest that packetization is altogether harmful to throughput,
because a packet size of 1 bit produces the lowest PER, because no bits share a
common fate. However, this is not the case, because the sending of each packet
incurs significant overhead that is unrelated to its size. This overhead is both due
to headers that are sent with each frame, and due to the fact that, for each frame,
the wireless channel has to be contended for, losing additional time. There exists at
least one analytic model that tries to calculate the exact interplay between packet
sizes, bit rates and throughput [QCJS03]. However, it is quite complicated, and in
practical experiments, the results were not completely satisfactory [Fan12], though
we could not conclude whether this was due to the model or the measurements used
as its input.

Instead, we will now move on to using simulation instead. As a simulator, we use
ns-3 [LH06, HRFR06, ns3], a well-known and -tested simulation framework in wide
use. One advantage of ns-3 in this specific use case is that its wireless models have
been under close scrutiny [PH09,PH10,BRENM+10] and shown that they map real-
world results very well. To produce the throughput measurements presented in the
following, we created a very simple simulation setup:

1. Two nodes, an AP sending data and a STA receiving it.

2. An application creating packets at a speed that is guaranteed to saturate the
channel.

3. Use of the FixedRssLoss propagation loss model, which sets the channel SNR
to a fixed value.

4. Use of the ConstantRateWifiManager, which disables all rate adaptation and
sends all frames at a specified data rate.

5. 60 seconds of simulation time.

5.2. Concept 151

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-9 -6 -3 0 3 6 9 12 15 18 21

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

SNR [dB]

1 Mbps
2 Mbps

5.5 Mbps
11 Mbps
6 Mbps
9 Mbps

12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

(a) Throughput in Mbps for an application-layer packet size of 20 bytes.

 0

 1

 2

 3

 4

 5

 6

-9 -6 -3 0 3 6 9 12 15 18 21

T
h
ro

u
g
h
p
u
t

[M
b
p

s
]

SNR [dB]

1 Mbps
2 Mbps

5.5 Mbps
11 Mbps
6 Mbps
9 Mbps

12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

(b) Throughput in Mbps for an application-layer packet size of 250 bytes.

 0

 5

 10

 15

 20

-9 -6 -3 0 3 6 9 12 15 18 21

T
h
ro

u
g
h
p
u
t

[M
b
p
s
]

SNR [dB]

1 Mbps
2 Mbps

5.5 Mbps
11 Mbps
6 Mbps
9 Mbps

12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

(c) Throughput in Mbps for an application-layer packet size of 1472 bytes.

Figure 5.5 Simulated (application-level) throughput for all 802.11g rates at different packet
sizes. Crossover points between the rates are clearly visible. The two faster DSSS rates (5.5 and
11 Mbit/s) are not competitive and outperformed by OFDM rates in every scenario. 9 Mbit/s
is practically useless due to its extremely small area of top performance. The sharp cutoff of
1 Mbit/s at −7 dB is due to the energy detection threshold of the simulated network controller.

152 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

-2 -1

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

SNR [dB]

20
50

100
250
500

1000
1472

(a) Throughput at 6 Mbit/s

 0

 5

 10

 15

 20

 25

 17 18

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

SNR [dB]

20
50

100
250
500

1000
1472

(b) Throughput at 54 Mbit/s

Figure 5.6 Simulated (application-level) throughput for two 802.11g rates at different packet
sizes. While the absolute throughput strongly depends on packet size, the SNR region in which
a rate switches from unusable to top performance stays nearly the same.

6. Several simulation runs with different application-layer packet sizes: 20, 50,
100, 250, 500, 1000, and 1472 (a typical Maximum Segment Size (MSS) for
Internet traffic) bytes. Several runs for each setup were not necessary, because
results varied insignificantly over several repetitions.

Results for some packet sizes are shown in Figure 5.5; the omitted results can be ap-
proximated from the presented results. These results show that throughput strongly
depends on packet size: At a payload of 20 bytes, throughput caps out at 0.5 Mbit/s
even for the fastest rates under very good conditions, while at 1472 bytes, throughput
exceeds 20 Mbit/s. The large difference between these numbers and the nominal bit
rates is due to various kinds of overheads, as mentioned above: inter-frame spaces,
preambles, and protocol headers. In the investigated case, the latter added 30 bytes
for 802.11 MAC (26 Bytes header including 802.11e QoS extensions, 4 bytes CRC
footer), 8 bytes for SNAP, 20 bytes for IPv4 and 8 bytes for UDP, which on its own
amounts to 330% overhead to each 20-byte packet.

Each of the graphs in Figure 5.5 shows a characteristic pattern over S-shaped curves
that ”cross over” at certain points. These “crossover” points between rates define
where a switch from one rate to another is beneficial. In better channel conditions,
the faster rate can show its advantages of transmitting data faster; in worse channel
conditions, this advantage is overshadowed by the higher BER, which offsets the
speed advantages, and makes a slower but more robust rate more beneficial.

Careful comparison of the crossover points in 5.5 shows that, while absolute through-
put varies greatly depending on packet size, the SNR value at which one rate starts
to outperform another varies little. For example, the crossover between 12 Mbit/s
and 18 Mbit/s is at 4.64 dB for 20-byte packets and at 4.82 dB for 1472-byte packets.
This can also be seen in Figure 5.6. Instead of showing all rates for a certain packet
size in one graph as in Figure 5.5, each graph shows the performance of all packet
sizes for a certain rate. The difference between full-performance throughput and no
throughput at all always falls into the same SNR region and and spreads less than
a 2 dB interval. This observation is important because it means that packet size is

5.2. Concept 153

 0

 10

 20

 30

 40

 16 16.05 16.1 16.15 16.2 16.25

S
N

R
 [

d
B

]

Time [s]

Channel
Feedback sent

(a) slow channel

 0

 10

 20

 30

 40

 16 16.05 16.1 16.15 16.2 16.25

S
N

R
 [

d
B

]

Time [s]

Channel
Feedback sent

(b) fast channel

Figure 5.7 Feedback frequency adapts to the speed of the channel. In a slow channel, few
rate changes are required and hence little feedback is. In a fast channel, feedback is sent much
more frequently to constantly adapt rates to the strongly varying channel conditions.

negligible as a factor, and we can define a single set of crossover points that will
produce good performance for all packet sizes.

We have now finally answered our question of when to send our on-demand rate
adaptation feedback. Feedback needs to be sent when channel conditions change
enough to cross a crossover point. At this time, the receiver needs to inform the
sender that another rate than the currently used one provides higher performance
(throughput). At other times, the receiver can abstain from sending feedback and
leave the channel open for others to use (e.g., for the sender to send more data, or for
other participants). This has the advantage that the overhead adapts to the channel
speed. In stable channel conditions that do not require rate changes, no feedback
is sent, and the time saved can be used for sending more data. In strongly varying
conditions, many feedback frames will be sent, so that the sender can adapt to the
optimum rate at any given time. Figure 5.7 illustrates this via a quarter-second
excerpt taken from the simulative evaluation we will present later in Section 5.5.

5.2.3 How to Send Feedback: A New MAC Frame Type

After describing and answering the question of when to sent feedback, we still have
to solve the problem of how to send it. As mentioned before, we will not use ac-
knowledged traffic for error-tolerant transmissions. We also do not want to rely on
sufficient error-sensitive (and thus acknowledged) traffic to be concurrently present
at any given time, which could be used to adapt rates correctly for both acknowl-
edged and non-acknowledged traffic.

We therefore have to transfer rate adaptation information in another way. To do
this, we extend the 802.11 standard by defining a new frame type called a feedback
frame. The 802.11 standard already defines a number of frame types, which are
identified in the MAC header via two fields, the type and the subtype fields. The
former is 2 bytes long and defines the well-known classes of frames: data frames,
management frames and control frames. The latter is 4 bytes long and defines a

154 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

Octets!

Frame Control! Duration! RA! TA! Feedback! FCS!

2! 4! 6! 6! 4!1!

Version! Reserved! MCS Select!

Bits! 2! 2! 4!

Figure 5.8 OFRA’s feedback frame follows the layout of a standard 802.11 frame. The actual
feedback information is encoded in the four bits denoted “MCS Select”.

number of different frames within each class. Some examples of management frames
(type = 00) are association requests (subtype = 0000) and responses (0001), or
beacons (1000). Examples for control frames (type = 01) are RTS (subtype = 1011)
and CTS (1100). Data frames also come in different subtypes, especially for data
frames with piggybacked control information.

The difference between management and control frames is that management frames
deal with the connection of a participant to an 802.11 network. Frames that contain
information pertaining to connection setup and teardown are management frames.
Control frames, on the other hand, facilitate data transfer between participants of
the network. As such, it is clear that our on-demand feedback belongs to the category
of control frames, because it ensures that data transfers between participants are
possible and efficient.

Adding a new control frame subtype is possible because the 4-bit address spaces
allows 16 such subtypes to be defined, but only 9 are used (in the current, 2012
version of the 802.11 standard [IEEE12b]). Thus, we can define our feedback frame
to be one of the remaining 7 options which are reserved for future use. This has the
advantage that participants supporting OFRA can decode the frame, while partic-
ipants that do not support OFRA will discard the unknown frame type. Creating
and handling such a new frame type is not only theoretically possible, but also
practically implementable, even on typical commodity hardware [Göt13].

Figure 5.8 shows the layout of our feedback frame. The upper row contains fields
requested by the standard to create a valid frame. The frame control field, among
other information, denotes the frame as a control frame of the feedback frame type.
The duration field informs all listeners about the time the channel will be occupied
by this frame. RA and TA denote the receiver’s and the transmitter’s address. FCS
is the frame check sequence, a 32-bit CRC. The actual information that we feed
back is contained within a single byte. Its content fields are shown in the lower row
of the figure. The version field was added to allow future extension of the feedback
frame format, for example, to extend the presented scheme for full 802.11n [IEEE09]
and 802.11ac [IEEE13] support, which provides more rates to choose from, as well
as schemes such as MIMO and channel bonding. In its current, initial version, it is
set to 0. The next two bits are not used to transmit any information and are defined

5.2. Concept 155

as “reserved for future use”.53 Finally, the choice of rate is encoded in four bits. The
16 possible values in this field allow us to encode all 802.11g rates.

On-demand feedback is thus implemented by the receiver checking the SNR of frames
received from another station, as well as the bit rate at which these frames were sent.
If the SNR suggests that a different rate than the one used (by comparing it to the
crossover points identified in Section 5.2.2), the receiver sends a feedback frame
to the sender of the data, denoting the new optimal rate in the MCS Select field.
When a sender receives a feedback frame, it will remember the rate choice signaled
in that frame, and use that rate for future communication with that station. Note
that feedback frames are not acknowledged. Correct reception of a feedback frame
is implicitly signaled by a change in bit rate. If the receiver notes that rates have
not changed, it will send another feedback frame. To increase the robustness of
feedback frames, they are always sent at the lowest basic rate (typically 6 Mbit/s for
OFDM transmissions). For such a small frame, using higher rates provides very little
absolute speed benefit (cf. Figure 5.5a, and keep in mind that 20 bytes of application
payload produce frames of 86 bytes, or almost 4 times larger than a feedback frame),
so the robustness provided by using the lowest basic rate comes at a small price,
and virtually guarantees correct reception of the frame at medium and high SNRs.

Note that we send information about the preferred rate in our feedback frames.
Another possibility would have been to send the sensed SNR value to the sender. It is
mainly for practical reasons that we decided against this: while we have SNR values
easily available in simulation, many hardware devices do not provide this metric,
for the problems that come with its measurement. Theoretically, a correct SNR
measurement would need to measure both signal and noise at the same point in time.
In simulation, this is trivial, because both values are calculated by the simulator, and
only afterwards combined into an SNR value. Real hardware, however, will have to
deduce these values from the received signals. In the best case, it can try to deduce
them from the known preamble pattern of frames. Other than that, it can only
measure the received power of the signal, and compare it to power measurements
during earlier times in which no frame reception was in progress. As a result of
these problems, most hardware only provides signal quality metrics in the form of
Received Signal Strength (RSS). Worse, especially on older hardware, this RSS is
often presented in an arbitrary metric. For example, while Atheros cards typically
report the RSS in dBm, older cards often used an arbitrary so-called Received Signal
Strength Indicator (RSSI) scale that might, for example, give values on a scale of 0
to 100. Therefore, taking the reception quality indicator (SNR or RSSI) and sending
it back from the receiver to the sender might not help the sender at all. Unless both
sender and receiver are of the same hardware type, there is no guarantee that their
interpretation of the numbers is identical. Thus, sensible rate adaptation cannot be
ensured anymore. This is why the receiver sends a rate instruction in the feedback
frame, instead of informing the sender about the measured signal quality.

Feedback obviously requires high timeliness. The longer it takes for the sender to
correctly adapt their rate to the optimum one, the more the performance suffers.

53This is done to pad the feedback information to a full byte, because there are no provisions in
802.11 to send partial octets.

156 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

Either data is sent at a lower rate than it should be, or (potentially even worse)
at a higher rate, which increases the risk of bit errors. We therefore need to make
sure that feedback is created and sent, as well as received and interpreted in a
timely fashion. The fast creation of feedback is guaranteed by the fact that the
receiver checks every received frame for SNR and bit rate, and immediately creates
a feedback frame if necessary. The sender will react to a received feedback frame
immediately by changing the rate to the one instructed by the receiver. The main
delay in this scheme is the time the feedback frame potentially spends in the net-
work adapter’s send queue on the (data) receiver’s side. Especially in the case of
bidirectional or concurrent traffic, the queue might be filled with data frames. If
the feedback frame were to be appended to that queue, this might lead to a con-
siderable delay in feedback sending. However, because we decided to use No-ACK
for our data transmissions, and because this scheme was introduced by the 802.11e
extension [IEEE05], we can make use of all the other functionalities introduced by
this extension. One of those is the concept of several queues with different priorities
to better support QoS. Instead of one single queue, 802.11e defines four queues (cf.
Section 2.5), with the high-priority queues having a higher chance to contend for the
channel. By putting the feedback frames into the highest-priority queue, we create a
fast track that allows our feedback frames to overtake standard data frames that are
added to the normal-priority queues, and increase the speed at which our feedback
frames are sent out.

To summarize, we have explained the problem of scarcity of information, and how
our feedback-based system can circumvent it (Section 5.2.1). We showed when it
is beneficial to switch between rates, and that feedback should be sent on demand
when such a crossover point is reached (Section 5.2.2). Finally, we explained how
feedback can be encoded for transport between receiver and sender, and how such
transport can be done in a timely fashion (Section 5.2.3).

5.3 Related Work

Because practical usage of IEEE 802.11 requires the use of rate adaptation, but
the standards do not define a rate adaptation algorithm, such algorithms have been
proposed in literature in large numbers. Thus, it is impossible to give a complete
overview of the whole field of rate adaptation in this section. However, typical
examples of different types of algorithms will be presented. They can be categorized
in a myriad of ways, but for this work, a useful way is to differentiate between
sender- vs. receiver-based as well as frame- vs. SNR-based approaches. These can
be combined to give us a two-dimensional space. Table 5.5 categorizes related work
amongst those lines.

Frame-based Approaches

Virtually all algorithms currently used in practice fall into the frame-based, sender-
based category. One reason for this is the ease of implementation and guaranteed

5.3. Related Work 157

Frame-based SNR-based

Sender-based ARF [KM97]
AARF [LMT04]

CARA [KKCQ06]
RRAA [WYLB06]
minstrel [minstrel]

CHARM [JWS08]
BRAVE [DD12]

Receiver-based RBAR [HVB01]
OAR [SKSK02]

SoftRate [VBJ09]
AccuRate [SSCN10]

RAM [CGQ12]
OFRA [SHP+12]

Table 5.5 Rate adaptation algorithms can be distinguished along the two dimensions of sender-
vs. receiver-based and frame- vs. SNR-based approaches. This table shows how OFRA and
related work fall into those categories.

hardware support: all the algorithm needs to do is to keep track of whether data
transmission were successful, something that all commodity cards signal back to the
operating system. It also does not need to rely on signal quality measurements and
the various ways these can be acquired and presented (as discussed in the previous
section).

Typical examples of frame- and sender-based approaches include ARF [KM97], one
of the first widely used rate adaptation algorithms; its extension AARF [LMT04];
CARA [KKCQ06]; RRRA [WYLB06]; and minstrel [minstrel], the current standard
algorithm used by the Linux kernel. Because these algorithms are used as comparison
algorithms for OFRA in our evaluation, we defer explanation of their behavior to
Section 5.5.3. As a general rule, these algorithms count transmission successes and
failures at different bit rates and decide, based on this, which rate to use for the
next frame that is to be sent. They differ in details such as how aggressively they
age their information, and whether they use RTS/CTS in certain situations.

One behavior that all these frame-and-sender-based algorithms share is probing.
Since they do not receive any explicit quality information from the receiver, they need
to infer quality from transmission successes or failures. However, this only allows the
recognition of degrading channel conditions: a certain rate will produce increasing
numbers of transmission errors, so the algorithm will choose a lower rate. Conversely,
if channel conditions improve, there is no direct way to recognize this: transmission
failures will become increasingly uncommon, but this on its own does not guarantee
that the next higher rate will produce satisfactory results. Compare Figure 5.5c,
where a rate of 36 MBps can produce near-perfect results for approximately 5 dB
before the next higher rate of 48 MBps becomes usable. Therefore, such algorithms
need to occasionally send frames at a higher rate to probe whether this rate produces
satisfactory results and should be switched to. Especially in slowly-changing channel
conditions, this can lead to a comparatively high error rate, because regular probing
leads to a number of transmission failures. Conversely, in fast-changing channels,

158 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

the probing of such algorithms is susceptible to being too slow in its reaction: unless
the algorithm probes aggressively and risks switching to higher rates early, channel
conditions will have changed significantly by the time probing suggests a higher rate
to be used. This can lead to either high error rates, or to being too conservative and
constantly sticking to low rates.

The fact that Table 5.5 lists no receiver-based, frame-based algorithms is because
such a combination makes little sense. The idea of a receiver-based algorithm is to
feed back information to the receiver that it does not have yet. However, at least in
ACKed traffic, the information whether frames were received or not is already con-
ferred by acknowledgments. Simply feeding back this information, or information
solely based on it, would therefore be tantamount to useless duplication of infor-
mation. Furthermore, on the receiver’s side, the SNR of received frames is known.
This information gives much more detailed insight into channel conditions than the
simple binary received—not received. It would make little sense to disregard this
richer information.

SNR- and Sender-Based Approaches

SNR-based algorithms that do their rate decision at the sender’s side rely on chan-
nel reciprocity, that is, that the channels exhibits symmetric properties: if a node
receives frames at a certain SNR from another node, it expects its own frames to
show the same SNR when sending it to that node. These algorithms combine several
advantages: first, they use the richer information available from SNR. Second, they
do not have to feed back information from the receiver to the sender. This means
that they are self-contained and can work on their own without any support from
the receiver.

However, there are also several downsides to this approach. Most importantly, the
assumption that channels are always symmetric does not necessarily hold in practice.
It has been shown [CGQ09] that, especially in mobile scenarios, channels can exhibit
asymmetric behavior, in which case this class of algorithms cannot adapt the rate
properly. Furthermore, like frame-based approaches, these algorithms, by design,
cannot properly adapt No-ACK traffic, especially if they rely on measuring the SNR
from ACK frames. If they rely on data frames from other stations (solely, or in
addition to ACKs), they will be able to collect SNR information and switch No-
ACK data traffic; however, unidirectional such traffic will not provide any SNR
feedback to the sender, at which point the algorithms cannot adapt the rate any
more.

Two popular examples of this type of rate adaptation are CHARM and BRAVE.
Like all SNR-based algorithms, CHARM [JWS08] uses a lookup table to decide
which rate to use for a certain SNR. This SNR is the weighted average of the last
received SNR a history of previous SNR values. One idiosyncrasy of CHARM is that
it allows online calibration of its lookup tables by keeping track of how often frame
transmissions failed at a predicted rate. However, while it is clear how crossover
points in CHARM’s lookup table can be adjusted conservatively (reducing them to
choose lower rates), it is not clear how the algorithm recovers from them and can

5.3. Related Work 159

adjust them in the opposite direction: since it does not employ probing, higher rates
are not chosen optimistically, so there is the risk that the algorithms “digs itself into
a hole” of underselection.

BRAVE [DD12] similarly uses a lookup table, but in addition comes with two vari-
ants of its rate decision algorithm, a conservative (termed “SAFE”) and an optimistic
(termed “AGGRO” for aggressive) version. It switches between these two variants
by counting frame successes, which in effect makes it a hybrid algorithm that mostly
relies on SNR, but also uses frame-based concepts. BRAVE’s lookup table itself is
extremely simple, only using three entries instead of one for every rate. This is offset
by specifying several rates in each table entry, which are tried successively on frame
errors. This means that BRAVE, more so than other sender-based, SNR-based algo-
rithms, depends on acknowledged traffic. Using it to send No-ACK traffic will either
lead to sending out each frame multiple times, or always choosing the first (highest)
rate in each of its three lookup table entries, leading to strong overselection.

SNR- and Receiver-Based Approaches

Receiver-based rate adaptation algorithms are based on the observation that the
sender knows the current channel conditions at its position, and therefore which
rate is optimal at any given point in time. However, it needs to feed back this
information, preferably shortly before a data frame is sent by the sender. This
shows two problems that every receiver-based algorithm needs to tackle, and which
were described for OFRA in the previous sections (Sections 5.2.2 and 5.2.3): when
should feedback be sent so that its information is available and not outdated, and
how should it be sent?

Early receiver-based algorithms used RTS/CTS exchanges to solve the problem of
timely and accurate feedback. For example, in RBAR [HVB01], the sender sends an
RTS, to which the receiver answers with a CTS. This CTS contains information fro
the sender about the desired rate, which is done by changing the contents of the CTS
frame from the standard-mandated layout. However, the authors claim that these
changes are backwards-compatible to standard RTS/CTS frames. The RTS/CTS
exchange is done before each data frame. Therefore, while the feedback information
is very current, the overhead introduced by RBAR is very large. In addition to the
large overhead, there is also the problem of channel reservation. The sender already
reserves the channel for a certain amount of time in its RTS frame. However, at this
point in time, it does not know yet how much time it will take to transmit the data
frame, because it does not know which rate to use, because that is only signaled
in the CTS frame. It therefore needs to conservatively reserve as much time as the
frame would take at the lowest rate. In many cases, the channel will therefore stay
reserved, but unused if a higher rate is chosen, compounding the efficiency problems
of RBAR.

OAR [SKSK02] ameliorates this latter problem by adding a burst sending mode.
If an RTS reservation is long enough that, at the chosen rate, more than one data
frame fits into the reservation, several are sent during that time. Note that this is
different from Block ACKs as defined in the IEEE 802.11e extension [IEEE05] years

160 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

later, in that every frame within this burst is acknowledged independently. However,
it still requires the overhead of the RTS/CTS exchange.

RAM [CGQ12] solves the problem of high RTS/CTS overhead by signaling its rate
decisions in the ACK frame following a data frame. This is done by sending the
acknowledgment at the desired data frame rate, instead of at the standard-mandated
base rate. While this is less accurate than the RTS/CTS approach (because the
time between an ACK and a subsequent frame is larger than between a CTS and
data frame following it), it solves the problem of the massive overhead which is
introduced by the earlier schemes. This is all the more important because, with
increasing data rates, the static RTS/CTS overhead leads to an increasing relative
overhead. When those algorithms were proposed in the early 2000s, original 802.11
products (which only supported rates of 1 Mbit/s and 2 Mbit/s) were still widespread
and the newer 802.11a and 802.11b standards had just been ratified. With higher
rates, the static RTS/CTS meant higher and higher potential throughput losses.
Since RAM does not use its own feedback frames, but instead encodes the feedback
information into the data rate at which the ACK is sent, it has a lower overhead
than OFRA. However, sending ACKs at high data rates increases the risk that these
become corrupted or lost, leading to unnecessary retransmissions. Furthermore, such
a scheme is obviously incompatible with No-ACK transmissions, in which no ACKs
are sent that could signal the feedback.

SoftRate [VBJ09] follows an approach similar to OFRA in how it sends feedback: it
also employs specially crafted feedback frames. However, the rate adaptation algo-
rithm goes one step further in how it collects frame quality information. Instead of
relying on an SNR or RSS metric, it uses detailed physical layer per-bit information,
so called soft information, that it receives from SoftPHY [JB07], which SoftRate’s
authors presented in an earlier paper. Such soft information does not only signal
which bit the PHY decoded and demodulated from the received wave pattern, but in
addition a value that denotes the confidence of the PHY in the bit’s correctness, that
is, the probability with which the bit is 0 or 1.54 This high amount of information
leads to potentially better rate adaptation choices, especially since SoftPHY also
employs frame postambles in addition to the standard preambles to aid in detection
of interference and collisions (as opposed to low-qality channels). However, this also
means that SoftRate is not directly compatible to standard 802.11. In addition, the
used soft information is not provided by PHY implementations on commodity cards;
in fact, the authors had to implement their algorithm on a USRP [USRP] with GNU
Radio [gnuradio], a software-defined radio, and then struggled with its performance.

AccuRate [SSCN10] follows a very similar approach to SoftRate, but instead of using
per-bit soft information, it goes one step further and derives its quality metric from
per-(PHY-)symbol information about In-Phase and Quadrature deviation from the
optimum values. As a result of the similarity to SoftRate, AccuRate shows the same
disadvantages: it cannot be used on commodity hardware and loses full compatibility
to standard 802.11.

54We explained the concept of soft information in more detail in Section 3.3.1 when we presented
ISCD as use case for error tolerance.

5.4. Implementation 161

Finally, one conceptual downside of receiver-based rate adaptation algorithms is that
they require support on both sides of the communication. Sender-based approaches
collect all required information locally, for example, by counting ACKs and their
absence, or by measuring the SNR of received frames. Receiver-based approaches
need logic on the receiver side to measure and feedback this information, and on
the sender side to interpret this feedback and act accordingly. However, in our use
case scenario, this downside is not problematic. Since we assume a deployment
in which both sides of the communication are under control of the user (home or
small business scenarios), deploying a receiver-based scheme is not as problematic
as in other scenarios. In fact, we already require some changes to the WLAN AP
to properly support coexistence of error-tolerant and error-sensitive traffic (cf. Sec-
tion 3.5). Hence, we can deploy a receiver-based rate adaptation algorithm such
as OFRA without introducing any further limitations on the applicability of our
error-tolerance scheme.

5.4 Implementation

After the conceptual designing of OFRA, we decided to implement and test it in a
network simulator. This has numerous advantages, among them the ease of creating
network topologies and scenarios without cumbersome deployment of real hardware,
and full control over the wireless channel to investigate OFRA’s behavior over a wide
range of environmental settings.

The decision to use ns-3 was based on several properties of that simulation frame-
work. Besides the fact that a great number of rate adaptation algorithms had
already been implemented for ns-3, which would ease our comparative evaluation,
and that, as mentioned in Section 5.2.2.3, the wireless models have been scrutinized
heavily [PH09, PH10, BRENM+10], one main advantage of ns-3 over many other
simulators is that its simulation models closely approximate implementations in real
systems. An implementation in ns-3 therefore already gives hints towards potential
implementation problems in real systems. ns-3 also comes with a detailed imple-
mentation of the 802.11 MAC and PHY, which has all parts that are required for
this work completely modeled.

802.11 rate adaptation algorithms are implemented in ns-3 by deriving from the
abstract base class WifiRemoteStationManager. It provides all necessary event
methods that are called by the lower and upper layers to trigger rate adaptation; for
example, cases of successful or failed receptions of Data frames. Whenever a node
is created in the simulation, the creator decides which rate adaptation scheme a
node will use. Afterwards, whenever the node communicates with another network
participant for the first time, an instance of the rate adaptation class will be created.
In the typical case of infrastructure WLAN (which we investigated), STAs will only
have one communication partner, the AP. Only the AP will have to manage multiple
WifiRemoteStationManager instances.

The WifiRemoteStationManager is embedded into a framework of classes that form
ns-3’s implementation of the 802.11 MAC, as is shown in Figure 5.9. WifiMac

162 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

WifiRemote
StationManager

MacLow

WifiMac

DcaTxop/
EdcaTxopN

MacRxMiddle

WifiNetDevice

next protocol

YansWifiPhy
packet flow

information flow

Figure 5.9 Packet and information flow through ns3’s 802.11 MAC implementation. MacLow

checks for transmission successes or failures and informs WifiRemoteStationManager’s rate
adaptation, which in turn instructs DcaTxop or EdcaTxopN on which rate to use. We add
an additional information stream to WifiMac to instruct it to send feedback frames when
appropriate.

implements high-level management such as network association, and is the interface
to the network layer. Frames are then sent to DcaTxop or EdcaTxopN, depending on
whether the 802.11 extensions are used. This class deals with enqueueing frames as
well as correct contention and backoff behavior. Once the channel has been claimed,
frames are forwarded to MacLow, which forms the interface to the PHY and deals
with transmission and reception of frames within a contention-free period, that is,
ACKs for Data frames or RTS–CTS–Data–ACK exchanges. Received Data frames
are passed on to MacRxMiddle, whose main job is filtering of retransmissions (in
case an ACK got lost and a frame was received multiple times) and reassembly of
fragmented frames.

In its standard implementation, WifiRemoteStationManager is purely about infor-
mation management; MacLow informs it about transmissions successes or failures,
and DcaTxop/EdcaTxopN will request a rate decision whenever a frame is prepared
for sending. We extended this so that OfraRemoteStationManager can trigger the
sending of feedback frames by instructing WifiMac to do so. Furthermore, MacLow

was extended to recognize feedback frames and pass the contained information to
OfraRemoteStationManager.

The actual decision when to send feedback is done by monitoring the SNR of re-
ceived frames, and by comparing those SNRs to the crossover points as defined in
Section 5.2.2.3.

5.5. Evaluation 163

5.5 Evaluation

Before we present results from our simulation, we need to describe the setup that we
used to parameterize our simulation. Because the performance of rate adaptation
algorithms is strongly dependent on channel conditions, it is especially important to
note the choices made to assess the significance and validity of the presented results.

5.5.1 Simulation Model

In ns-3, channel conditions can be influenced by several models at the same time.
This approach is typically used to combine (static) path loss models with (dynamic)
fading models. For our simulations, we used the simple log-distance model to account
for path loss:

PL = PLd0
+ 10γ log10

d

d0

with PL being the path loss in dB, PLd0
the path loss at a reference distance d0, d

the actual distance between sender and receiver, and γ the path loss exponent that
governs the amount of loss over distance. For example, for γ = 2, the log-distance
model produces the basic free-space path loss model with its loss proportional to
the square of the distance. While this model is very simple, it is sufficient for our
purposes. Since we are mainly interested in the channel dynamics, the log-distance
model merely gives us baseline SNR number depending on distance, while the main
influence on rate adaptation performance is given by the fading model.

To model fading, we employed a stochastic sum-of-sinusoids model [WPY07]. Such
a model is especially suited to model OFDM behavior due to its use of correlated
Rayleigh fading channels to simulate frequency-selective fading [SSGA10], which
otherwise is not modeled in ns-3.

5.5.2 Simulation Setup and Topology

The focus of all our work, which is on small deployments, such as in homes or small
companies, is also reflected in the topologies we investigated. In all our setups, one
AP was the designated receiver for data sent from 1, 4, or 8 STAs (upstream sce-
nario). We investigated this scenario because, as opposed to the AP sending data to
the STAs (downstream), the upstream scenario encounters hidden station problems
if the STAs are sufficiently distant from one another. The third option, communi-
cation between STAs in the same infrastructure network, is merely a combination
of the two previous scenarios, because STAs never communicate directly with each
other, instead sending their data to the AP which then relays it. There is hence
little additional insight in this scenario.

The topology setups are shown in Figure 5.10. The STAs were equidistantly dis-
tributed on the circumference of a disc with radius d and origin on the AP. The

164 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

AP

STA

d

(a) single-node

AP

STA

d

STA d

STA

d

STAd

STA

d

STA

d

STA

d

STA

d

(b) multi-node (4- and 8-node) topology

Figure 5.10 In the single-node topology, a single STA sent traffic to the AP. In the multi-node
topology, 4 or 8 STAs were equidistantly spaced along a ring of radius d, so that each STA
had the same distance to the AP, and each had the same neighborhood topology of STAs.
Dashed lines denoted data traffic flow direction (direction of DATA frames), gray STAs those
that are added in addition to the black STAs in the 8-node topology.

setup was evaluated for radii d of 10, 20, 30, 40, 50, 60, 70 and 80 m. However,
for reasons of lucidity, we will only present results for 10, 30, 50 and 70 m; there
is no irregular behavior for the intermediate distances, while at 80 m, intermittent
association losses of the STAs to the AP produced results that were skewed and
provided little insight.

To model different channels, we initialized the sum-of-sinusoids with three different
Doppler shifts that model environmental speeds. While the stations are immovable
within the simulation (and with respect to the log-distance path loss model), we
can interpret the environmental speeds as constant-speed mobility of the stations,
or simply as more challenging channel conditions. In the former case, our Doppler
shift values correspond to environmental speeds of 0.72, 4.32 and 14.1 km/h. Just as
in the distance case, we will limit ourselves to presenting only the case of 0.72 km/h
(from here on termed “slow” channel) and 14.1 km/h (termed “fast” channel).

Results presented in this evaluation section were aggregated from 20 repetitions of
each scenario. Following the advised practice, ns-3’s MRG32k3a pseudo-random
number generator [L’E99] was initialized with its standard seed and incrementing
run numbers, which change the RNG state in a way that guarantees no overlaps in
the generated random number streams [ns3man]. Confidence intervals denote 95%
confidence.

5.5.3 Comparison Algorithms

For our performance evaluation, we compared OFRA with several well-known rate
adaptation algorithms:

5.5. Evaluation 165

• ARF [KM97] (Auto Rate Fallback) was one of the first widely used rate adap-
tation algorithms. The algorithm increases the rate after 10 consecutive suc-
cessful transmissions and decreases it after 3 consecutive transmission failures
(or immediately falls back if the first “probe” frame at the higher rate fails).
This leads to slow adaptation in fast channels and sawtooth behavior in slow
and stable channels: after the optimum rate is found, ARF will repeatedly try
the higher rate, which leads to transmission failures and a drop back to the
original rate. Nevertheless, as a baseline algorithm, it is popular for compar-
isons.

• AARF [LMT04] (Adaptive ARF) is an extension of ARF that dynamically
adapts the numbers of required consecutive transmission successes or failures.
In a stable channel, AARF displays a much subdued sawtooth pattern, by re-
quiring a high number of transmission successes before testing the next higher
rate.

• CARA [KKCQ06] (Collision-Aware Rate Adaptation) The main difference
of CARA over previous ARF rate adaptation algorithms is the introduction
of a dynamical switching scheme and enables or disables RTS/CTS for data
transmissions based on previous transmission errors. Thus CARA aims to
differentiate transmission errors due to channel effects from transmission errors
due to collisions.

• RRAA [WYLB06] (Robust Rate Adaptation Algorithm) switches between
rates by calculating a loss ratio over a sliding window whose size depends
on the currently used rate. If loss ratio is above an upper or below a lower
threshold (which are also rate-dependent), the rate is changed to the next
lower or higher rate, respectively.

• Minstrel [minstrel] is the standard rate adaptation algorithm used by the
Linux kernel. It uses 10% of all sent frames as probe frames, which are sent with
rates that can be either higher or lower than the currently used rate. Internally,
it keeps track of the performance of each rate with respect to throughput and
transmission reliability, and switches to whichever rate it considers best for
the current conditions. Specifically, it can also skip rates, while the previously
described algorithms can only step up and down one rate at a time.

In addition, we investigated two OFRA setups:

• OFRA-ACK is OFRA used in a standard setup in which all frames are
acknowledged. This means that OFRA cannot show its full potential, because,
while the comparison algorithms use ACKs for rate decisions, OFRA does not,
and has to send its feedback frames in addition to acknowledgments. However,
this is not only a realistic use case for a wireless network that employs OFRA,
but currently has no error-tolerant connections; it is also a fairer comparison
case because the additional throughput that a No-ACK system can reach under
good conditions (cf. Section 2.5 and Figure 2.8 on page 31) might otherwise
overestimate OFRA’s performance in scenarios comparable to its competitors.

166 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

• OFRA-NoACK uses OFRA for rate adaptation, and the sent traffic is not ac-
knowledged on the MAC layer. Other rate adaptation algorithms cannot pro-
duce sensible adaptation in this scenario: they interpret the absence of ACKs
as transmission failures, and reduce the rate for all frames to the base rate,
the slowest rate available. This setup therefore especially showcases OFRA’s
ability to enable rate adaptation for transmissions without acknowledgments.

5.5.4 Evaluation results

In the following, we will present evaluation results from our simulation. We will
highlight several performance metrics. Specifically, we will investigate the following
behaviors:

• We will first present throughput-related results: goodput (data rate of cor-
rectly received data), error rate (fraction of failed transmissions), and over-
head (from non-data frames). While goodput and error rate are intuitively
understandable, overhead requires a definition. For this evaluation, we defined
overhead as the fraction of simulation time that was spent on sending control
frames that are related to data transmissions:

toverhead =
tACK + tRT S + tCT S + tfeedback

tsim

• Next, we will analyze rate selection accuracy, that is, how often the rate adap-
tation chose the rate that, given the receiver’s SNR for the frame, turned out
to be the optimum rate.

• Finally, we will look at error burst length, that is, the relative occurrence of
subsequent transmission failures.

However, before we look into these metrics to compare OFRA with other rate adap-
tation algorithms, we need to address an effect that we witnessed during early evalu-
ation results and that lead us to slightly modify our approach. Early results showed
OFRA to have a problematically high error rate. After investigation, we noticed
that basing our rate change decisions exactly on the optimum SNR resulting from
the crossover points as shown in Figure 5.5 led to a high number of overselections
(i.e., selecting a rate that was higher than optimum). This was due to the fact that,
like every rate adaptation algorithm, OFRA has to predict the optimum rate of the
next frame from witnessing previous frames. In a fast channel, it would happen
regularly that we switched to a rate that turned out to be too optimistic for the
next frame, a behavior that has been witnessed and described previously [CK10] for
other SNR-based rate adaptation algorithms.

To assuage this behavior, we investigated shifting the SNR thresholds at which to
switch by 1, 2 and 3 dB. This gives us a safety margin: the rate is not shifted unless
the previous frame has been well above the crossover point. Figure 5.11 shows
results for no safety margin and safety margins of 1, 2 and 3 dB. For example, if the

5.5. Evaluation 167

 0

 5

 10

 15

 20

 25

 30

10 30 50 70

G
o

o
d

p
u

t
[M

b
it
/s

]

Distance [m]

0 dB
1 dB
2 dB
3 dB

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

10 30 50 70

E
rr

o
r

R
a

te
 [

%
]

Distance [m]

0 dB
1 dB
2 dB
3 dB

(a) 1 node, slow channel

 0

 5

 10

 15

 20

 25

 30

10 30 50 70

G
o

o
d

p
u

t
[M

b
it
/s

]

Distance [m]

0 dB
1 dB
2 dB
3 dB

 0

 10

 20

 30

 40

 50

 60

 70

 80

10 30 50 70

E
rr

o
r

R
a

te
 [

%
]

Distance [m]

0 dB
1 dB
2 dB
3 dB

(b) 8 nodes, fast channel

Figure 5.11 Switching rates exactly at the crossover points leads to undesirably high error
rates. Introducing safety margins that shift rate switching to a higher SNR strongly reduces
error rate, has little detrimental effect on goodput (and can even increase it).

crossover point between two rates was 11 dB, the faster rate would not be chosen
unless the expected SNR was at least 12 dB in the case of a 1 db safety margin. For
brevity reasons, we do not show all results; rather, we present results from the two
extremes of our evaluation, the 1-node setup in a slow channel and the 8-node setup
in a fast channel.

As can be seen in the figure, a safety margin of 1 dB produces a significant reduction
of error rate in all cases. Results from higher safety margins are not as clear: in
the simple 1-node, slow-channel case, they do not further decrease error rate, but
are detrimental to goodput. In the challenging 8-node, fast-channel case, they help
decrease the error rate further, but their effect per dB is much lower; in addition,
highest throughput is achieved at the 1 dB safety margin setting.

Based on these results, we decided to configure OFRA with a safety margin of 1 dB
for comparison with other rate adaptation algorithms. For the remainder of this
evaluation section, when we use OFRA, it is used with this safety margin of 1 dB.

5.5.4.1 Throughput-Related Metrics

We will now present comparison results with the rate adaptation algorithms listed
in Section 5.5.3. Figures 5.12 and 5.13 present results from our simulations for the

168 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

 0

 5

 10

 15

 20

 25

 30

 35

10 30 50 70

G
o

o
d

p
u

t
[M

b
it
/s

]

Distance [m]

 0

 5

 10

 15

 20

 25

 30

 35

10 30 50 70

E
rr

o
r

R
a

te
 [

%
]

Distance [m]

 0

 2

 4

 6

 8

 10

 12

 14

10 30 50 70

O
v
e

rh
e

a
d

 [
%

]

Distance [m]

ARF
AARF
minstrel
CARA

RRAA
OFRA-Ack
OFRA-NoAck

(a) slow channel

 0

 5

 10

 15

 20

 25

 30

 35

10 30 50 70

G
o
o
d
p
u
t

[M
b
it
/s

]

Distance [m]

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

10 30 50 70

E
rr

o
r

R
a
te

 [
%

]

Distance [m]

 0

 2

 4

 6

 8

 10

 12

 14

10 30 50 70

O
v
e
rh

e
a
d
 [

%
]

Distance [m]

ARF
AARF
minstrel
CARA

RRAA
OFRA-Ack
OFRA-NoAck

(b) fast channel

Figure 5.12 Goodput, error rate and overhead in the single-node topology. In both slow and
fast channels, OFRA-Ack performs as good or better than all comparison algorithms for all
metrics except overhead. OFRA-NoAck outperforms all other algorithms in overhead (due to
not sending ACKs) and goodput, at similar error rates to them.

5.5. Evaluation 169

 0

 5

 10

 15

 20

 25

 30

10 30 50 70

G
o

o
d

p
u

t
[M

b
it
/s

]

Distance [m]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10 30 50 70

E
rr

o
r

R
a

te
 [

%
]

Distance [m]

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

10 30 50 70

O
v
e

rh
e

a
d

 [
%

]

Distance [m]

ARF
AARF
minstrel
CARA

RRAA
OFRA-Ack
OFRA-NoAck

(a) slow channel

 0

 5

 10

 15

 20

 25

 30

10 30 50 70

G
o
o
d
p
u
t

[M
b
it
/s

]

Distance [m]

 0

 10

 20

 30

 40

 50

 60

 70

10 30 50 70

E
rr

o
r

R
a
te

 [
%

]

Distance [m]

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

10 30 50 70

O
v
e
rh

e
a
d
 [

%
]

Distance [m]

ARF
AARF
minstrel
CARA

RRAA
OFRA-Ack
OFRA-NoAck

(b) fast channel

Figure 5.13 Aggregated goodput of all 8 STAs, error rate and overhead in the 8-node topology.
OFRA-Ack provides higher goodput than comparison algorithms, at the cost of higher overhead
(due to sending both ACKs and feedback frames). Error rates vary strongly, but only at the
highest distances does OFRA-Ack’s error rate significantly deteriorate compared to the other
algorithms. Regarding OFRA-Noack, again, overhead is extremely low (due to saving ACKs),
goodput is at least as high (and generally higher) than for comparison algorithms, but error
rates increase sharply, especially in fast channels at large distances.

170 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

metrics of goodput, error rate and overhead at several distances, number of STAs
and channel speeds, as explained in Section 5.5.2.

For the less challenging single-node topology (Figure 5.12), the very simple baseline
algorithm ARF already produces good results. The higher sophistication of RRAA
in fact works against it in this setup. To a lesser extent, this also holds true for
CARA: in a single-node topology without collisions or hidden stations, its collision
detection does not help. Minstrel’s aggressive probing for higher data rates leads to
a high error rate and a somewhat reduced goodput.

Two results regarding OFRA are of special note in these setups. First, especially
in slow channels (Figure 5.12a), both OFRA versions (Ack and NoAck) produce a
much low error rate than the comparison algorithms. Due to their receiver-based
nature, the sender can rely on getting feedback from the receiver whenever it needs
to change the rate. It therefore does not need to employ any kind of probing for
higher rates, which can lead to harmful overselection, which often leads to frame
errors. Second, OFRA-NoAck’s overhead is extremely small compared to all other
algorithms, to the point where the results are almost invisible in the graph in the
slow channel case. This is due to the fact that in this scenario, no ACKs were sent.
The overhead is therefore merely due to feedback frames, which are sent only when
required—that is, very rarely in a slow channel.

The fact that overhead decreases with distance (that is, lower SNR values) is due
to the fact that in those situations, data frames were sent at lower rates. This
means that fewer data frames could be sent within a simulation run, which decreased
the number of ACK frames as well, which means less time was spent on frames
categorized as overhead.

The 8-node topology (Figure 5.13), as a more challenging scenario, shows more
pronounced differences between the investigated rate adaptation algorithms. ARF
and AARF clearly produce the overall worst performance.55 They produce almost
no adaptation to speak of, falling back to the base OFDM rate of 6 Mbit/s and
keeping it for all distances. Minstrel, and even more so CARA, show high goodput
performance at small distances, but strongly degrade with distances. Note that
both versions of OFRA outperform CARA, even though the latter tries to protect
against collisions, a problem that OFRA does not target specifically. This protection
against collisions via RTS/CTS is clearly visible in the high overhead of CARA in
this simulation setup. Overall, OFRA provides very stable goodput performance:
differences between 1-node and 8-node setups, as well as between slow and fast
channel setups, are minimal.

Even though OFRA produces high goodput and low overhead in all scenarios, there
is one downside visible in the 8-node case, especially with a fast channel. Error rates
are higher than for the comparison algorithms, especially for OFRA-NoAck. This is
due to a combination of several factors. (1) The more stations send concurrently, the
longer the average time between consecutive frames of one connection becomes. To-
gether with increasingly fast changes in channel conditions (i.e., decreased coherence

55In fact, taking both scenarios into account, it can be seen that the performance differences
between ARF and AARF are negligible in most cases.

5.5. Evaluation 171

time), correct rate adaptation becomes harder for all algorithms. (2) Since OFRA
signals its feedback via special frames, those have to contend for channel access, as
opposed to ACK frames, which are sent immediately upon reception because the
sender already reserved the channel for the subsequent ACK. With more and more
concurrently sending nodes, the chance of successfully receiving channel access is
lowered, and feedback sending delayed. (3) Especially for the case of OFRA-NoAck
(which shows even high error rates than OFRA-Ack), the interplay between No-ACK
traffic and contention becomes a problem. Under normal (ACKed) circumstances,
if a frame is not transmitted correctly, the size of the contention window (i.e., the
maximum time a sender may randomly wait before sending the frame) is increased
to assuage the risk of collisions, which in effect leads to a lower number of frame
transmission during a period of low channel quality that was not yet adapted to.
The contention window limits are reduced upon successful transmission. Because
with No-ACK traffic, the feedback inherent to the ACK whether transmission was
successful is missing, no such contention window adaptation is done. Hence, even
after frame losses, frames are sent as often as before. This means that more frames
are sent when conditions are especially problematic, increasing the overall error rate.

However, OFRA is still competitive, providing the best results of the field in the
important goodput metric. Furthermore, it should be noted again that it is the only
rate adaptation algorithm capable of adapting No-ACK traffic. All other rate adap-
tation algorithms will fall back to their base rate, providing no sensible adaptation
at all.

5.5.4.2 Rate Selection Accuracy

As a second step of our evaluation, we investigated the accuracy of rate adaptation
algorithms in choosing the optimum rate for each data frame. For each frame, the
chosen rate is compared to the SNR that was measured for that frame. We then
compared whether the rate was the optimum rate for that SNR. This information is
directly inferred from the crossover points that were extracted from the throughput
measurements presented in Figure 5.5c. Since it is impossible to exactly predict
future channel conditions, no algorithm can choose the optimum rate every time.
How often it chooses this optimum rate, however, is an important performance
metric: the more often, the higher the potential goodput. Choosing a rate lower
than what the channel would have supported, that is, underselection, leads to less-
than-optimum use of the channel and reduced goodput. The opposite, that is,
overselection, can potentially increase goodput beyond that of accurate rate decision.
However, it incurs a high risk of transmission errors and consequently dropping of
the frame. This more than offsets the higher transmission rate (and is, in fact, the
reason for the position of the crossover points between rates at certain SNRs). It is
therefore potentially harmful to overselect the rate.

Figure 5.14 shows results from 3 scenarios. Since all slow-channel scenarios were
very similar and followed the same behavior as the 1-node, fast-channel scenario
presented in Figure 5.14a, we opted to present three different fast-channel scenarios
for 1, 4 and 8 nodes.

172 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

 0

 0.2

 0.4

 0.6

 0.8

 1

A
R

F
A

A
R

F
m

in
stre

l
C

A
R

A
R

R
A

A
O

F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck

10 30 50 70
Distance [m]

accurate
underselect
overselect

(a) 1 node

 0

 0.2

 0.4

 0.6

 0.8

 1

A
R

F
A

A
R

F
m

in
stre

l
C

A
R

A
R

R
A

A
O

F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck

10 30 50 70
Distance [m]

accurate
underselect
overselect

(b) 4 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

A
R

F
A

A
R

F
m

in
stre

l
C

A
R

A
R

R
A

A
O

F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck
A

R
F

A
A

R
F

m
in

stre
l

C
A

R
A

R
R

A
A

O
F
R

A
-A

ck
O

F
R

A
-N

o
A

ck

10 30 50 70
Distance [m]

accurate
underselect
overselect

(c) 8 nodes

Figure 5.14 Rate selection accuracy for different algorithms, distances and node numbers.
All presented results are from fast-channel scenarios. OFRA consistently shows the highest
amount of accurate rate selection, and in the single-node scenario (as well as all slow-channel
scenarios, which are not presented here) the lowest amount of harmful overselection. however,
with increasing number of nodes, OFRA’s overselection increases.

5.5. Evaluation 173

The 1-node case poses little challenge to the rate algorithms. There are two distinct
classes of algorithms with respect to accurate selection: ARF, AARF, CARA and
(to a certain extent) RRAA show almost equal selection accuracy, while minstrel
and both OFRAs form another class that fares better. Overselection is low for all
algorithms, with minstrel producing the largest overselection due to its aggressive
probing scheme.

The 4-node case shows that the baseline algorithms ARF and AARF become almost
useless at adaptation. In fact, they spend most of their time sending frames at the
base rate of 6 Mbit/s or marginally higher. The fact that their accuracy increases
with distance is solely to the fact that at larger distances, this choice sometimes
happens to be the right one. RRAA, while producing satisfactory results at higher
distances, seems to eschew the highest rates completely, which leads to immense un-
derselection at the 10 m distance. CARA and minstrel both provide high accuracy at
small distances, but deteriorate with distance, by both over- and underselecting more
often. Both OFRAs again provide the highest amount of accurate selection. How-
ever, they are prone to overselection, with OFRA-Ack producing similar amounts
as the comparison algorithms, while OFRA-NoAck shows the highest amount of
overselection of all algorithms.

Finally, the 8-node case is mostly similar to the 4-node case, with somewhat more
extreme results. ARF and AARF still perform badly, minstrel, CARA and RRRA
accurately select somewhat better (with, again, the except of RRAA at 10 m), and
both OFRAs provide the highest accurate selection, at the cost of the highest over-
selection.

These results confirm our results from the previous section, where both OFRAs
produced the highest goodput, but showed high error rates in fast-channel, 8-node
scenarios. We can now infer that these are indeed due to high accurate selection at
the cost of high overselection.

This also ties in with our results with regard to dB safety margins. The effect of
such margins is to shift rate selection from overselection towards underselection. It
therefore stands to reason that a dynamic adaptation of safety margins might be
beneficial, with a 1 dB (or even 0 dB) margin for simple scenarios with few nodes
and a slow channel, and higher margins for more challenging situations. We will
discuss this idea in Section 5.6.

5.5.4.3 Error Burst Lengths

As a last step in our evaluation, we investigated the length of error bursts, that is,
how often several frames in a row are lost or received with errors. This can give
us some insight into the speed at which a rate adaptation algorithm can adapt to
sudden drops in channel quality. Since we already investigated the overall error rate
in Section 5.5.4.1, we decided to normalize the data for this step of the evaluation:
We investigated how many 1-bursts (i.e., single frame errors), 2-bursts (two frames
corrupted back-to-back), . . . , occurred for each STA–AP connection. We then ag-
gregated, for each rate adaptation algorithm, the results from all runs at all distances

174 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16 18 20

C
D

F

Burst Length [frames]

ARF
AARF

minstrel
CARA
RRAA

OFRA-Ack
OFRA-NoAck

(a) 1 node, slow channel

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

C
D

F

Burst Length [frames]

ARF
AARF

minstrel
CARA
RRAA

OFRA-Ack
OFRA-NoAck

(b) 1 node, fast channel

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 4 6 8 10 12 14 16 18 20

C
D

F

Burst Length [frames]

ARF
AARF

minstrel
CARA
RRAA

OFRA-Ack
OFRA-NoAck

(c) 8 nodes, slow channel

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 4 6 8 10 12 14 16 18 20

C
D

F

Burst Length [frames]

ARF
AARF

minstrel
CARA
RRAA

OFRA-Ack
OFRA-NoAck

(d) 8 nodes, fast channel

Figure 5.15 Relative occurrence of different lengths of error bursts over all error occurrences.
OFRA tends to produce longer a larger fraction of long error bursts than comparison algorithms
only in situations in which its absolute number of errors is very low. In all other situations,
there are no significant differences.

(but did not aggregate over node numbers and channel speeds). Finally, we created
CDF graphs out of the results by showing the relative occurrence of different burst
lengths.

The results are shown in Figure 5.15. Note that the CDF axes do not start at
0, and each at different value, to improve lucidity. At first glance, these results
seem counter-intuitive: as conditions become more challenging (more nodes, faster
channel), the number of longer error bursts seems to decrease. This should not be
interpreted as an increase in quality: rather, as the amount of errors increases in
such conditions, the number of single frame errors increases compared to those of
longer bursts. Hence, there are not fewer long error bursts in challenging conditions,
but the number of single frame errors increases even more strongly, shifting the CDF
values.

The 8-node graphs do not show any strong differences between the investigated
rate adaptation algorithms: ARF, AARF, and RRAA produce slightly fewer bursts,
which correlates with their relatively low throughput performance (cf. Figure 5.13).
Both versions of OFRA show a behavior that closely resembles the other comparison
algorithms.

5.5. Evaluation 175

The 1-node graph, interestingly, shows larger differences. Especially under very non-
challenging conditions (1 node, slow channel), OFRA produces significantly longer
error bursts than most comparison algorithms. However, this again is an artifact
of the presentation of these results as relative values: in these experiments, both
OFRAs’ error rates were extremely low (cf. Figure 5.12), so this CDF shows the
opposite effect as the one described above: just as single frame error rates increase
overproportionally as error rate increases, those single bit errors are also the ones
that disappear more strongly as error rate decreases. In absolute numbers, OFRA in
fact produced fewer long error bursts, but the number of single bit errors decreased
even more strongly (e.g., by a factor of almost 50 when comparing ARF and OFRA
in the single-node, slow-channel scenario). The obvious outlier is RRAA, which
has an even higher tendency for long burst errors; additionally, this one cannot be
explained by an overall lower error rate. We can only conject that RRAA’s sliding
windows makes it slow to adapt to channel changes, especially since, once the rate
is chosen, it is kept for a certain amount of frames to fill the window before another
rate decision is started. Why this is so much more obvious in this specific scenario,
however, is a question that might warrant further scrutiny in the future.

Overall, we can derive from these numbers that, especially in challenging conditions,
OFRA’s burst error behavior is similar to those of other rate adaptation algorithms.
In less challenging conditions, it tends to produce more and longer burst errors
relative to single errors, but the overall error rate numbers, as presented before, are
so low that this is no reason for concern.

5.5.4.4 Summary

Summarizing the evaluation results, we see that OFRA is a very competitive al-
gorithm. Not only was it designed to support No-ACK traffic, which none of the
comparison algorithms do. Even when ACKs are used, OFRA outperforms or at
least performs on par with the comparison algorithms. This is even more noteworthy
since OFRA does not use those ACKs for its rate adaptation decisions, and has to
send its feedback frames in addition, which puts it at a disadvantage. That it can
nevertheless compete favorably shows the strength of the concept.

Regarding throughput, both OFRA versions perform better than comparison algo-
rithms in all tested scenarios. Error rate results are more varied, with error rates
lower in single-node topologies, but higher in 8-node scenario. This directly corre-
lates with rate selection accuracy: in single-node topologies, both OFRAs show the
highest fraction of accurate selections (with only minstrel reaching the same accu-
racy) and lowest fraction of underselection. In the 4- and 8-node scenarios, accurate
selection stays the highest in the field, but overselection also increases. With respect
to the distribution of burst error lengths over all error events, there are few signifi-
cant differences between OFRA and its competitors; these only appear in situations
in which OFRA’s extremely low error rate makes the differences inconsequential.

We consider OFRA, even in its version presented here, a strong contender for high-
performance rate adaptation. This holds true even more because OFRA opens up
a new field of rate adaptation possibilities, by allowing to adapt rates for No-ACK

176 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

traffic. Nevertheless, we will present some extensions in the following to further
improve OFRA’s behavior, for example, in challenging channel conditions.

5.6 Extensions and Future Works

OFRA, as presented so far, has shown to be highly effective at rate adaptation in
many scenarios. However, there are still some open issues and options for improve-
ment. Specifically, we identified the following problems:

SNR Calibration

The crossover points that we calculated in the ns-3 simulation are not directly trans-
ferable to real hardware. In fact, these points are not even transferable between
different types of network adapters, because they depend on several factors, such
as the signal gain due to the receiver hardware and antenna. Furthermore, most
consumer hardware does not provide SNR values directly, because these are prob-
lematic to calculate (they would need to measure the background noise and the
signal separately). Instead, most hardware will provide the received signal strength
in dBm. Some older hardware might even only provide RSSI values, on an arbitrary
scale that might, for example, run from 0 to 100.

In its current version, OFRA hence requires an offline training phase in which the
crossover points are determined by long measurements that try to produce a wide
range of SNR values during the measurement. In practice, this can be done by
circumventing the irregularities of the wireless channel by connecting two network
adapters with a coaxial cable and inserting different attenuators in between. While
this works, it is cumbersome and not very practical. We hence need some way
to calibrate SNR values online, while the card is running, in a bootstrap fashion
that allows usage of the card (albeit potentially at reduced performance) during
calibration.

Dynamic Safety Margins

We have seen in our evaluation that using the exact crossover points as switching
points between rates produces harmful overselection. As a remedy, we decided to
introduce a safety margin of 1 dB: only if the expected SNR was at least 1 dB above
the crossover point, the higher rate would be selected. This worked very well in
the 1-node scenario. However, in the 8-node scenario, especially at high channel
speeds, error rates for OFRA were high due to high overselection. In such scenarios,
a larger safety margin would be beneficial. Conversely, using a larger safety margin
in less challenging scenarios where error rates are already very low would reduce
throughput for no significant gains.

Therefore, it would be helpful to be able to set the safety margin dynamically,
depending on the environmental conditions, such as channel speed and number of
other stations.

5.6. Extensions and Future Works 177

As it turns out, both of these can be solved in the same way. By creating a system
that changes the crossover points at run-time and/or influences the rate choice in
other ways, both on-line calibration and dynamic safety margins can be realized.
We will concisely explain two approaches, both with their specific advantages and
disadvantages, and refer to [Göt13] for more in-depth explanations.

The Binning Method

This approach is inspired by the on-line calibration method employed by charm
[JWS08]. If, within a window of frame receptions, the average SNR is lower than
the crossover point, but the PER is below a preset threshold, then the crossover
point is moved so that the rate is also used at the lower SNR. Conversely, if the
average SNR over the window was higher than the crossover point, but PER was
above a threshold, then the point is moved so the rate will only be used at higher
SNR.

This approach allows on-line calibration as long as provisions are made that no rate’s
SNR range can completely overlap another’s. Otherwise, some rates could stop to
be chosen completely. This can happen if a crossover point is moved so much that
it falls on top of another crossover point. The reason this can happen at all is that
crossover points are only moved when a rate is in use, because only by using the rate,
calibration data is created. If one rate is constantly in use, and a large correction
is necessary, it might end up overtaking an adjacent crossover point. Thus, for
example, rate n would stop being used, because it seems to the rate adaptation
algorithm that below the crossover point, rate n − 1 would be a better choice, and
above the point rate n+1. This can be easily prevented by ensuring strict monotony,
by moving crossover points that otherwise would be overtaken, by a certain factor.
For example, the calibration algorithm can make sure that adjacent crossover points
have at least a distance of 0.5 dB, moving them accordingly otherwise. Ensuring this
monotony makes sense: at least within a modulation class (DSSS, OFDM), every
rate has an SNR range in which it produced the best performance.

The second problem with this approach is that it can cause a significant increase
in feedback messages. Because the calibration sets a crossover point to the average
of recent SNR measurements, it is very likely that SNR measurements in the near
future will fall into the same area, slightly above and below the new crossover point.
Every time the SNR now switches between slightly below and slightly above the new
point, a feedback frame is created.

The Marking Method

This approach avoids the problem that causes the large amount of feedback frames
being generated. Instead of changing the crossover points directly, it instead marks
rates as temporarily unreliable. If a rate, despite the fact that the SNR suggests it
should perform well, produces higher-than-expected PERs, it is marked as unreli-
able. While it is marked as such, it will not be used by the rate adaptation.

178 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

Because the crossover points themselves are not changed, this approach does not
trigger excessive feedback as the binning method does. However, for the same reason,
it cannot be used for on-line calibration of new network adapters without a set of
crossover points that was pre-measured off-line. For this initial SNR calibration, it
is necessary to create sensible crossover points from measurements. Additionally,
to realize whether a marked rate is reliable again, the marking method needs to
occasionally probe the channel with frames sent at those rates, in a way similar to
how frame-based approaches, such as ARF or minstrel, do it. This increases the risk
of frame loss somewhat.

In practice, a combination of the two approaches seems sensible: the binning method
should be used to create initial SNR crossover points for new, unknown hardware,
for which no such points are available; afterwards, the marking method can be used.
Alternatively, the binning method can be extended by a method that limits the
rate of feedback being sent, especially when the differences between the measured
SNR and the crossover point are small. Concepts for such rate-limiting have been
proposed in [Hit11].

Influence of Interference

The marking method has another advantage that can be highly relevant, depending
on the environment. In our simulated environment, we used SNR values as quality
metrics. These SNR values were calculated over the complete length of the frame. If
interference occurred, this lead to a drop in SNR, which allowed the rate adaptation
to recognize the problem. On the other hand, in real hardware, no such exact SNR
is calculated. The calculation is generally only done over the preamble, which is
easy to do: since the preamble comprises well-known patterns that are always the
same, matching the received signals against the expected ones allows for easy SNR
calculation. However, if interference only occurs in latter parts of the frame, this
is not reflected in the SNR any more. Additionally, the vast majority of systems,
which only provide Received Signal Strength (RSS) measurements, cannot recognize
interference this way at all, regardless of whether they calculate RSS over the full
frame or only the preamble, since interference introduces additional (but destructive)
power into the received signal.

In such a scenario, the binning method changes crossover points incorrectly, because
it cannot distinguish between high RSS due to a good reception or due to interfer-
ence. The marking method, however, can mark our rates at which interference leads
to frame loss. Since it can be beneficial to reduce rate under interference (such that
the more robust signals can resist it), the marking method provides an efficient way
of coping with interference, which otherwise OFRA is susceptible to.

5.7 Conclusion

In this chapter, we presented OFRA, an On-Demand Feedback Rate Adaptation al-
gorithm, whose main novel contribution is the ability to adapt rate for traffic without

5.7. Conclusion 179

acknowledgments (No-ACK). Since state-of-the-art rate adaptation algorithms, as
used in today’s systems, rely on ACKs for rate adaptation decision, and therefore
fall back to the lowest speed available, we introduced explicit feedback in the form
of specially-crafted feedback frames.

These feedback frames have the added advantage that they can be sent on-demand,
that is, only when channel conditions change significantly and warrant a change in
rate. This allows timely reacting to changes in the channel state, while keeping
the amount of feedback low in slow-channel conditions. As a result, we could show
in Section 5.5 that the overhead of our feedback scheme is much lower compared
to the constant stream of ACKs in 802.11. Consequently, OFRA realizes higher
throughput than other rate adaptation algorithms when sending No-ACK traffic,
being able to utilize the freed time on the channel otherwise spent on ACKs effec-
tively. Furthermore, even with ACKed traffic, OFRA generally performs better than
state-of-the-art algorithms: the additional overhead of the feedback frames is offset
by its faster and more accurate rate adaptation.

In its current version, the algorithm loses performance in fast-channel scenarios with
many concurrent users, even though this performance loss mostly manifests itself in
losing its superior performance and only performing on par with comparison algo-
rithms. This is mostly due to increased levels of harmful overselection in those case.
However, we suggest solutions to this problem and some other practical downsides
of OFRA in Section 5.6. Preliminary results [Göt13] have shown that these exten-
sions are effective in solving, for example, the problem of OFRA’s performance in
interference scenarios.

Overall, we consider OFRA a good match to complement error tolerance, both
heuristic header tolerance as presented in this dissertation, and previous solutions
such as UDP-Lite, which also suffered from lacking support on the MAC layer and
by rate adaptation. Additionally, OFRA’s performance makes it a rate adaptation
algorithm that can improve the throughput of small and medium size WLAN deploy-
ments, even when error tolerance is of no concern. Thus, OFRA can be seen both
as an important and effective building block to deploy error tolerance in WLAN, as
well as a solution whose performance allow it to stand on its own.

180 5. OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments

Before him stood the Tree, his Tree, finished. If you could
say that of a Tree that was alive, its leaves opening, its
branches growing and bending in the wind that Niggle had
so often felt or guessed, and had so often failed to catch.

He gazed at the Tree, and slowly he lifted his arms and
opened them wide. ‘It’s a gift!’, he said.

—J. R. R. Tolkien, Leaf by Niggle

6
Conclusion

Wireless communications are becoming more and more important. However, com-
pared to wired communications, they also pose additional challenges, the most
prominent among them is a much higher error rate. Such errors lead to corruption
of packets, which are so far consequently dropped at the receiver, and potentially
then retransmitted. This behavior is very inefficient, especially for error tolerant
applications, and even potentially harmful if these applications have strict timing
requirements, as in the case of live streaming of VoIP.

This behavior motivated the desire to improve this inefficient scheme of packet drops
and potential retransmissions, and stimulated our research that is presented in this
thesis. By focusing on error-tolerant applications, we envisioned an approach in
which errors are tolerated, and packets processed regardless. Realizing that tech-
niques to support error-tolerance for application-level payloads already existed, we
focused on the more comprehensive problem of how to support processing of packets
with errors anywhere in the packet. This approach posed the fundamental challenge
that errors in headers can lead to unexpected behavior during packet processing,
the most notable and harmful of them being misattribution: The assignment of a
packet to the wrong application, because the demultiplexing information that iden-
tifies which connection a packet belongs to was corrupted.

6.1 Contributions and Results

To solve this problem, we devised a system in which header fields are categorized by
their importance to the identification decision. Unimportant fields can be ignored,
while important fields have to be repaired. We solved this repair challenge by the
observation that the network stack inside a host is aware of what connections are
open at any given point in time, and what the contents of those header fields that

182 6. Conclusion

carry identification information have to be, because those contents are exactly the
information that is used to demultiplex packets to their correct application even
when no errors occurred. By using a simple Hamming distance metric, we identified
which connection a packet most likely belonged to. Despite the simplicity of this
metric, we could show that Refector, as we termed the approach, is highly effective at
recovering from header errors, and can significantly reduce the packet loss rate even
compared to UDP-Lite, the state-of-the-art algorithm that supports payload-only
error tolerance. Furthermore, misattribution occurred extremely rarely. Finally,
we could show that even encryption of packets does not pose any insurmountable
challenges to Refector.

However, while Refector worked very well, we were not completely satisfied with
it having the downside that, to extend support to additional protocols, it required
in-depth knowledge about both error tolerance concepts and the inner workings
of those new protocols. Hence, we further extended the Refector concept by a
solution that does not require such knowledge to provide header error tolerance. We
designed a classification algorithm that allows to learn packet content patterns that
are specific to each connection, and use those patterns to match incoming packets
to ongoing connections. An important property of this algorithm is that it does not
require off-line learning: it learns new patterns as new connections are opened, and
does so within a few (correct) packets within opening of the connection. Again, we
could show that this classification algorithm can correctly identify which connection
a packet belongs to, even under very high BERs, and that misattribution is an
exceedingly rare occurrence.

The final main contribution presented in this dissertation is a novel rate adaptation
algorithm for 802.11 (WLAN). This contribution stems from the desire to have
an effective rate adaptation algorithm available that supports unacknowledged (No-
ACK) traffic in 802.11 networks. The desire, in turn, was motivated by the fact
that we needed to send error-tolerant traffic without ACKs in WLAN networks due
to the idiosyncrasies of the 802.11 standard, namely the extremely strict timing
requirements on sending ACKs, which our error recovery scheme could not fulfill.
Since state-of-the-art rate adaptation algorithms for 802.11 depend on ACKs as
feedback on transmission success or failure, those algorithms could not properly
select rates for No-ACK traffic. We hence designed a novel rate adaptation scheme
in which feedback is explicitly sent whenever channel conditions changed significantly
and warrant a rate change at the sender. As a side effect, the amount of feedback
adapts to the speed at which channel conditions change, so that less feedback is sent
when the channel is stable than when it is volatile. As a result, we designed a rate
adaptation algorithm that not only works with No-ACK traffic, but also provides
higher performance than state-of-the-art algorithms even when standard traffic is
used.

6.2 Future Work

While working on the topics of this dissertation, we encountered a number of ques-
tions and ideas for extensions. While we did not have the chance to pursue them in

6.2. Future Work 183

detail, we will give an overview here in the hope that others might find it worthwhile
to investigate them in the future. At the same time, discussing these open points
will show current limitations of our approaches.

We already discussed several specific points relating to future work for Refector
and for OFRA at the end of the respective chapters (Section 3.5 and Section 5.6,
respectively). To keep this section concise, we will not repeat the points given there,
and instead focus on more basic and general fields in which heuristic header error
recovery could be extended to broaden its applicability further.

Extensions to the Machine-Learning Algorithms

In Chapter 4, we presented a machine-learning approach to recover from packet er-
rors by creating connection-specific patterns on-line, as new connections are opened,
based on characteristic content in packet headers, and then matching incoming cor-
rupted packets against those patterns. We then presented preliminary work in Sec-
tion 4.5 that we conducted to provide insight into recovery by matching on extrinsic
factors, such as packet sizes and inter-arrival times. In the end, we abandoned our
investigation of this sub-topic.

However, we are still convinced that this idea and work has merit, and that it might
be possible to construct such an algorithm. This would be especially beneficial for
encrypted transmissions, in which also all or parts of the headers are encrypted.
While we showed in Section 3.2.4.5 that Refector can be used over encrypted links,
this assumed that the packet headers have been decrypted before heuristic recovery
occurs and hence their contents can be used for classification. This is the case in link-
layer encryption, as used in WLAN, but not if VPN connections that employ IPsec
tunneling are used, where decryption will only occur during IP header processing.
This is a special challenge for protocol-independent recovery, because recovery is
not done protocol-by-protocol (in which case decryption could be performed at the
appropriate time, and the higher-layer headers then recovered afterwards), but all
at once immediately after packet reception from the MAC layer. Such a work might
provide enough work for a dissertation on its own, or at least provide a starting
point for one. Such a dissertation would most probably straddle the areas of traffic
classification, which has produced much work for classification of traffic on backbone
routers (e.g., [MZ05, CDGS07]), and security, where works exist that investigate
possible attack vectors on encrypted traffic by observing factors such as packet sizes
and inter-arrival times (e.g., [SWT01,BLJL06]).

Error Tolerance for Low-Power Wireless Networks

In this dissertation, we presented approaches to recover from header errors in net-
works that employ Internet-style headers. While this encompasses the vast majority
of all networks in current use, there are specialized environments in which other
communication protocols are used, often because their special use cases do not re-
quire all capabilities provided by the Internet stack, and the resulting overhead of
using it is considered disadvantageous.

184 6. Conclusion

One example of such an area is the field of sensor networks and fields which de-
veloped from it (e.g., Cyber-Physical Networks and the Internet of Things), in
which low-power devices with wireless radios are used that generally employ the
802.15.4 [IEEE11] standard. One challenge in this area is that, to keep overhead
down, sensor network deployments often used specially crafted protocols to commu-
nicate. Refector, as a protocol-specific approach, therefore would require adaptation
to each such protocol, if they are used in a deployment. Protocol-independent re-
covery hence lends itself to this use case. Since our classification algorithm performs
very fast and requires little memory, it might be usable even on such constrained
devices, though we consider this a question that warrants further scrutiny.

Furthermore, since specially crafted protocols are often designed for a single specific
purpose, the redundancy in headers due to unused or larger-than-necessary fields
can be expected to be severely reduced. It is an open question how well heuristic
header error recovery would perform in such a scenario. To improve performance,
it might be beneficial to more closely investigate error patterns that occur in sensor
networks, a topic that we investigated in some detail [SCW13,SCHW14], but did not
discuss in this dissertation because of scope considerations. While we consciously
did not use such error pattern information in the approaches presented in this dis-
sertation because of the loss of generality incurred by using MAC- and PHY-specific
information, in such a challenging scenario, this might be an option to consider.

Upstream Traffic

We pointed out from the beginning of this dissertation that our envisioned usage
scenario for heuristic header error recovery was an end user on a wireless network
connected to the Internet. The heuristic recovery approaches presented in the disser-
tation leverage the fact that in this scenario, an end host knows which connections
it has open at any given time, and what values certain header fields have to contain
to match each connection. It is therefore only possible to apply these solutions for
downstream traffic, that is, traffic from the access point to the end host.

In contrast, to enable this solution for upstream traffic, the AP (or more generally
speaking, the gateway node that connects the wireless network with the Internet)
would need all the information that the end host uses in our scheme, for each end
host that is associated with AP. Not only is this a potentially much larger set of
connections to match each packet to; it also requires an additional communication
scheme between end hosts and access point to exchange and continuously update
that information, which itself uses channel capacity and is susceptible to errors.

Furthermore, the access point would need more stringent recovery rules, because the
next hops on the Internet backbone cannot be expected to be tolerant to any kind
of errors. On an end host, fields that are not important any more (for example, the
packet’s TTL) can be ignored. In contrast, an access point would have to repair
them. Finally, to prevent the packet from being discarded on the next hop, the
access point would also need to recompute checksums, which requires deep packet
inspection and modification.

6.3. Final Remarks 185

Multi-Hop Support

In theory, it is possible to extend a complete wireless multi-hop network, such as
a mesh network, with heuristic error recovery. However, the problem mentioned
above that an AP needs information about all connections of all end hosts is further
compounded: in a wireless multi-hop network with heuristic error recovery on each
hop, each forwarding node needs all connection information from all other nodes in
the network. At this point, keeping this information up to date becomes problematic
and similar to the overhead problems of proactive routing schemes.

Even if this large overhead can be tolerated, the fundamental problem of error
propagation and amplification should not be underestimated. As mentioned above,
the current heuristics are designed to identify the correct connection, but not to
completely repair all header fields, much less the payload. Over several wireless
hops, errors will therefore accumulate. Given enough hops, this can significantly
decrease decoding quality of the streamed data.

Nevertheless, it is not impossible to design such a scheme. Especially if deadline
requirements are strict, even a packet that might suffer from multiple error events
over several hops that arrives in time might be more beneficial than waiting for
retransmission, especially since the incurred delay is also additive if corruptions (and
hence retransmissions) occur on multiple hops. In fact, Alizai et al. recently showed
that header error recovery is possible in a multi-hop sensor network when using
the Collection Tree Protocol (CTP) [AKH+15]. Their work leverages the fact that
routing is predetermined, and as such, it is not necessary to keep track of different
connections with different receivers to recover from header errors: the destination
will always be the same, and routing will therefore not break if header errors occur.
While this work shows the feasibility of multi-hop heuristic header error recovery in
special scenarios, the greater question of the general feasibility of such an approach
is still unanswered.

6.3 Final Remarks

This dissertation presents a relatively unorthodox approach to error handling in
computer networks, which is already apparent form the fact that similar work is
few and far between. As to the best of our knowledge, this dissertation is the first
to take a comprehensive and rigorous look at the concept of heuristic header error
recovery, considering different approaches, the interrelation between layers 1 and 2
on the one side and layer 3 and up on the other side, and how to effectively prevent
misattributions.

At the beginning of this work, it was not clear to us whether such a heuristic recovery
scheme would even be feasible. Much skepticism stemmed from the fact that we
have to deal with unreliable information in areas of network communication were
information is, under normal circumstances, assumed to be perfectly correct, and
that today’s network protocols, in design as well as in implementation, are not
constructed with such a kind of error handling in mind.

186 6. Conclusion

However, not only were we able to show that this skepticism, while clearly not
unfounded, turned out to be over-cautious, the results we reached exceeded our
expectations at the beginning of this work by far. We could show that it is not only
possible to identify which connection a packet belongs to if we do not know the exact
contents of a packet’s header, we furthermore showed that it is not even necessary
to know anything about a protocol header’s layout and semantics, and still be able
to properly identify the connection with an extremely high confidence.

While it is clear from the aforementioned areas of future work that our approach is
still far from perfect, we are nevertheless very satisfied with the extent to which we
could show that heuristic header error recovery is possible, feasible, and practically
implementable. We are interested to see whether this dissertation, and the works
presented within, will stimulate future investigations in this field of research.

A
Analytical Approximation for Port
Choice Misattributions

In Section 3.2.2.3, we presented an analytical approximation of the worst-case mis-
attribution rate of a standard port choice without respect to maximizing Hamming
distances, and our port selection scheme which guarantees a minimum Hamming dis-
tance to any other port of at least 5. In this appendix, we will give a more detailed
calculation of how we derived the two expressions for worst-case misattributions.
Note that these calculations assume a binary symmetric channel, that is, every bit’s
probability to be corrupted is solely defined by a fixed BER, and independent of
errors in other bits.

Standard Port Choice

In the standard port choice, the worst case is a situation in which all 1-bit neighbors
of a port are used, and therefore any bit error in the port field leads to a misattri-
bution. We assume a port field size of 15 bits here because, while the port field is
actually 16 bits wide, we only consider ports in a private port range starting from
32768, fixing the first bit at 1.

Given a certain BER and a number n of bits, the chance that no errors occurs, that
is, that all bits are correct, can be calculated as

n∏

1

(1 − BER) = (1 − BER)n

since bit errors are considered independent event. The chance that at least one bit
error occurs is the complementary event, and can therefore is

188 A. Analytical Approximation for Port Choice Misattributions

1 −
(

(1 − BER)n
)

which is exactly the term given in Equation 3.1 for n = 15.

Refector’s Port Choice

With Refector’s port choice, the worst can was approximated as a misattribution
occurring as soon as 3 or more arbitrarily selected bits out of the 15 are flipped.
The probability that exactly k bits out of n are corrupted can be calculated using
the probability mass function of the binomial distribution:

P (X = k) =

(

n

k

)

BERk (1 − BER)n−k

This models the urn problem, with the equivalent combinatorial problem of the
probability to to draw exactly k white balls from the urn in n draws, with the
drawn ball placed back into the urn after each draw, and the overall number of balls
chosen so that the probability to draw a white ball is BER.

The probability that 3 or more out of 15 bits are flipped can now be calculated
by the sum of the probability that exactly 3 bits were flipped, plus the probability
that exactly 4 bits were flipped, . . . , plus the probability that exactly 15 bits were
flipped:

(

15
3

)

BER3 (1 − BER)12 +

(

15
4

)

BER4 (1 − BER)11 + . . .

. . . +

(

15
14

)

BER14 (1 − BER)1 +

(

15
15

)

BER15 (1 − BER)0

This can be summed up to create the term in Equation 3.2:

15∑

k=3

(

15
k

)

BERk (1 − BER)15−k

B
BER Calculation for 16- and 64-QAM

In Section 5.2.2.1, we gave the analytical expressions for the bit error probability of
16-QAM and 64-QAM modulation on an AWGN channel. This appendix contains
the detailed calculation to derive these expressions from the general formula.

The average bit error probability of M-ary (square) QAM is given by [CY02] as

Pb =
1

log2

√
M

log2

√
M

∑

k=1

Pb(k)

with Pb(k), the k-th bit error probability, given as

Pb(k) =
1√
M

(1−2−k)
√

M−1
∑

i=0

(−1)

⌊
i·2

k−1
√

M

⌋

·
(

2k−1 −
⌊

i · 2k−1

√
M

+
1
2

⌋)

· erfc

(

(2i + 1)

√

3γ log2 M

2(M − 1)

)

which gives us a combined form of

Pb =
1√

M log2

√
M

log2

√
M

∑

k=1

〈 (1−2−k)
√

M−1
∑

i=0

(−1)

⌊
i·2

k−1
√

M

⌋

·
(

2k−1 −
⌊

i · 2k−1

√
M

+
1
2

⌋)

· erfc

(

(2i + 1)

√

3γ log2 M

2(M − 1)

)

〉

We can now solve these equation for the required cases of 16-QAM and 64-QAM.

190 B. BER Calculation for 16- and 64-QAM

16-QAM

For M = 16, the first summation runs over only two terms:

Pb =
1
8

·
〈

1∑

i=0

(−1)⌊ i
4⌋ ·

(

1 −
⌊

i

4
+

1
2

⌋)

· erfc

(2i + 1)

√

2
5

γ

+
2∑

i=0

(−1)⌊ i
2⌋ ·

(

2 −
⌊

i

2
+

1
2

⌋)

· erfc

(2i + 1)

√

2
5

γ

〉

This shows that the inner summation(s) also only run over few terms:

Pb =
1
8

·
〈

1 · 1 · erfc

√

2
5

γ

+

1 · 1 · erfc

√

18
5

γ

+

1 · 2 · erfc

√

2
5

γ

+

1 · 3 · erfc

√

18
5

γ

+
[

−1 · 3 · erfc
√

10γ
]
〉

=
3
8

erfc

√

2
5

γ +
1
2

erfc

√

18
5

γ − 3
8

erfc
√

10γ

64-QAM

In this case, the first summation runs over three terms:

Pb =
1
24

·
〈

3∑

i=0

(−1)⌊ i
8⌋ ·

(

1 −
⌊

i

8
+

1
2

⌋)

· erfc
(

(2i + 1)
√

γ

7

)

+
5∑

i=0

(−1)⌊ i
4⌋ ·

(

2 −
⌊

i

4
+

1
2

⌋)

· erfc
(

(2i + 1)
√

γ

7

)

+
6∑

i=0

(−1)⌊ i
2⌋ ·

(

4 −
⌊

i

2
+

1
2

⌋)

· erfc
(

(2i + 1)
√

γ

7

)

〉

This time, we get a total of 17 inner summations instead of 5, as in the case of
16-QAM:

191

Pb =
1
24

·
〈[

1 · 1 · erfc
√

γ

7

]

+

1 · 1 · erfc

√

9
7

γ

+

1 · 1 · erfc

√

25
7

γ

+
[

1 · 1 · erfc
√

7γ
]

+
[

1 · 2 · erfc
√

γ

7

]

+

1 · 2 · erfc

√

9
7

γ

+

1 · 1 · erfc

√

25
7

γ

+
[

1 · 1 · erfc
√

7γ
]

+

−1 · 1 · erfc

√

81
7

γ

+

−1 · 1 · erfc

√

121
7

γ

+
[

1 · 4 · erfc
√

γ

7

]

+

1 · 3 · erfc

√

9
7

γ

+

−1 · 3 · erfc

√

25
7

γ

+
[

−1 · 2 · erfc
√

7γ
]

+

1 · 2 · erfc

√

81
7

γ

+

1 · 1 · erfc

√

121
7

γ

+

−1 · 1 · erfc

√

169
7

γ

〉

=
7
24

erfc
√

γ

7
+

1
4

erfc

√

9
7

γ − 1
24

erfc

√

25
7

γ +
1
24

erfc

√

81
7

γ − 1
24

erfc

√

169
7

γ

192 B. BER Calculation for 16- and 64-QAM

Abbreviations and Acronyms

AC Access Category

ACK Acknowledgment

AIFS Arbitration Interframe Space

AP Access Point

ARQ Automatic Repeat reQuest

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

BSSID Basic Service Set Identification

CBC-MAC Cipher Block Chaining Message Authentication Code

CCM Counter with CBC-MAC

CCMP CCM mode Protocol

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSRC Contributing Source Identifier

CTP Collection Tree Protocol

CTS Clear To Send

DSSS Direct Sequence Spread Spectrum

ETSI European Telecommunications Standards Institute

EVM Error Vector Magnitude

FEC Forward Error Correction

194 Abbreviations and Acronyms

IANA Internet Assigned Numbers Authority

ISCD Iterative Source–Channel Decoding

ITU International Telecommunication Union

IV Initialization Vector

MCS Modulation and Coding Scheme

MAC Medium Access Control

MIC Message Integrity Code

MIMO Multiple Input Multiple Output

MOS Mean Opinion Score

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NACK Negative Acknowledgment

NAT Network Address Translation

NAT-PMP NAT Port Mapping Protocol

OFDM Orthogonal Frequency-Division Multiplexing

OFRA On-demand Feedback Rate Adaptation

OS Operating System

PCP Port Control Protocol

PDR Packet Delivery Rate

PER Packet Error Rate

PESQ Perceptual Evaluation of Speech Quality

PHY PHYsical layer

PLCP Physical Layer Convergence Protocol

PLR Packet Loss Rate

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase-Shift Keying

195

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

RTCP RTP Control Protocol

RTP Real-Time Transport Protocol

RTS Request To Send

SIFS Short Interframe Space

SNR Signal-to-Noise Ratio

SSRC Synchronization Source Identifier

STA Station

TDMA Time Division Multiple Access

TID Traffic Identifier

TKIP Temporary Key Integrity Protocol

ToS Type of Service

TTL Time to Live

UPnP Universal Plug and Play

VoIP Voice over IP

WLAN Wireless LAN

XOR eXclusive OR

196 Abbreviations and Acronyms

Bibliography

[3GPP03] Technical Specification Group Services and System Aspects—3G
Security—Specification of the A5/3 Encryption Algorithms for GSM
and ECSD, and the GEA3 Encryption Algorithm for GPRS, 3rd
Generation Partnership Project Standard 3GPP TS 55.216, Revision
6.2.0, September 2003.

[3GPP06] Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2—Document 2: SNOW 3G Specification, 3rd Genera-
tion Partnership Project Standard, Revision 1.1, September 2006.

[3GPP09] Technical Specification Group Services and System Aspects—3G
Security—Specification of the A5/4 Encryption Algorithms for GSM
and ECSD, and the GEA4 Encryption Algorithm for GPRS, 3rd
Generation Partnership Project Standard 3GPP TS 55.226, Revision
9.0.0, September 2009.

[3GPP11] Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3—Document 2: ZUC Specification, 3rd Gen-
eration Partnership Project Standard, Revision 1.6, June 2011.

[AB03] Stefan Alfredsson and Anna Brunstrom. TCP-L: Allowing Bit Errors
in Wireless TCP. In Proceedings of the Twelfth IST Summit on Mobile
and Wireless Communications, IST-MWC ’03. IST, June 2003.

[ACS08] Marc Adrat, Thorsten Clevorn, and Laurent Schmalen. Iterative
Source-Channel Decoding & Turbo DeCodulation. In Rainer Martin,
Ulrich Heute, and Christiane Antweiler, editors, Advances in Digi-
tal Speech Transmission, chapter 13, pages 365–398. Wiley Online
Library, 2008.

[AKH+15] Muhammad Hamad Alizai, Muhammad Moosa Khattak, Dong Han,
Omprakash Gnawali, and Affan A. Syed. Recycling Corrupt Packets
ofer Multiple Hops. In Tarik Abdelzaher, Nuno Pereira, and Eduardo
Tovar, editors, Wireless Sensor Networks, volume 8965 of Lecture
Notes in Computer Science, pages 242–249. Springer International
Publishing, 2015.

[ASC14] Muhammad Naveed Aman, Biplab Sikdar, and Wai Kin Chan. Ef-
ficient Packet Recovery in Wireless Networks. In Proceedings of the

198 Bibliography

Twelfth IEEE Wireless Communications and Networking Conference,
WCNC ’14, pages 1791–1796. IEEE, April 2014.

[ath5k] Linux Wireless ath5k driver. https://wireless.wiki.kernel.org/

en/users/Drivers/ath5k. [Online, accessed 2015-04-14].

[AVC05] Marc Adrat, Peter Vary, and Thorsten Clevorn. Optimized Bit Rate
Allocation for Iterative Source-Channel Decoding and its Extension
towards Multi-Mode Transmission. In Proceedings of the 14th IST
Mobile & Communications Summit. EURASIP, June 2005.

[b43] Linux Wireless b43 driver. https://wireless.kernel.org/en/

users/Drivers/b43. [Online, accessed 2015-04-14].

[BBC+98] Steven Blake, David L. Black, Mark A. Carlson, Elwyn Davies, Zheng
Wang, and Walter Weiss. An Architecture for Differentiated Ser-
vices. Request for Comments 2475, Internet Engineering Task Force,
December 1998.

[BBC+04] Herbert Bos, Willem De Bruijn, Mihai Cristea, Trung Nguyen, and
Georgios Portokalidis. FFPF: Fairly Fast Packet Filters. In Proceed-
ings of the Sixth USENIX symposium on Operating Systems Design
& Implementation, OSDI’04, pages 347–363. USENIX Association,
December 2004.

[BBD+01] Carsten Bormann, Carsten Burmeister, Mikael Degermark, Hideaki
Fukushima, Hans Hannu, Lars-Erik Jonsson, Rolf Hakenberg, Tmima
Koren, Khiem Le, Zhigang Liu, Anton Martensson, Akihiro Miyazaki,
Krister Svanbro, Thomas Wiebke, Takeshi Yoshimura, and Haihong
Zheng. RObust Header Compression (ROHC): Framework and four
profiles: RTP, UDP, ESP, and uncompressed. Request for Comments
3095, Internet Engineering Task Force, July 2001.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and Issues in Data Stream Systems. In Pro-
ceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’02, pages 1–16,
New York, NY, USA, June 2002. ACM.

[BCK03] André Bourdoux, Boris Come, and Nadia Khaled. Non-reciprocal
Transceivers in OFDM/SDMA Systems: Impact and Mitigation. In
Proceedings of the 2003 Radio and Wireless Conference, RAWCON
’03, pages 183–186. IEEE, August 2003.

[BCS94] Robert Braden, David Clark, and Scott Shenker. Integrated Services
Architecture. Request for Comments 1633, Internet Engineering Task
Force, June 1994.

[BG96] Claude Berrou and Alain Glavieux. Near Optimum Error Correcting
Coding And Decoding: Turbo-Codes. IEEE Transactions on Com-
munications, 44(10):1261–1271, October 1996.

https://wireless.wiki.kernel.org/en/users/Drivers/ath5k
https://wireless.wiki.kernel.org/en/users/Drivers/ath5k
https://wireless.kernel.org/en/users/Drivers/b43
https://wireless.kernel.org/en/users/Drivers/b43

Bibliography 199

[BKH+11] Anirudh Badam, Michael Kaminsky, Dongsu Han, Konstantina Pa-
pagiannaki, David G. Andersen, and Srinivasan Seshan. The Hare
and the Tortoise: Taming Wireless Losses by Exploiting Wired Reli-
ability. In Proceedings of the Twelfth ACM International Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc ’11, pages
7:1–7:11, New York, NY, USA, May 2011. ACM.

[BLJL06] George Dean Bissias, Marc Liberatore, David Jensen, and Brian Neil
Levine. Privacy Vulnerabilities in Encrypted HTTP Streams. In
George Danezis and David Martin, editors, Privacy Enhancing Tech-
nologies, volume 3856 of Lecture Notes in Computer Science, pages
1–11. Springer Berlin Heidelberg, 2006.

[BLK+01] Rajesh Krishna Balan, Boon Peng Lee, K. Renjish R. Kumar, Lil-
lykutty Jacob, Winston Khoon Guan Seah, and Akkihebbal L.
Ananda. TCP HACK: TCP Header Checksum Option to Improve
Performance over Lossy Links. In Proceedings of the Twentieth An-
nual Joint Conference of the IEEE Computer and Communications
Societies, volume 1 of INFOCOM ’01, pages 309–318. IEEE, April
2001.

[BLV+10] Tobias Breddermann, Helge Lüders, Peter Vary, Ismet Aktaş, and
Florian Schmidt. Iterative Source-Channel Decoding with Cross-
Layer Support for Wireless VoIP. In Rudolf Mathar and Christoph
Ruland, editors, Proceedings of International ITG Conference on
Source and Channel Coding, SCC ’10, Berlin, Germany, January
2010. ITG, VDE Verlag.

[Bor14] Carsten Bormann. 6LoWPAN-GHC: Generic Header Compression
for IPv6 over Low-Power Wireless Personal Area Networks (6LoW-
PANs). Request for Comments 7400, Internet Engineering Task
Force, November 2014.

[Bra89] Richard Braden. Requirements for Internet Hosts – Communication
Layers. Request for Comments 1122, Internet Engineering Task Force,
October 1989.

[BRC60] Raj Chandra Bose and Dwijendra Kumar Ray-Chaudhuri. On A
Class of Error Correcting Binary Group Codes. Information and
Control, 3(1):68–79, March 1960.

[Bre01] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, Oc-
tober 2001.

[BRENM+10] Nicola Baldo, Manuel Requena-Esteso, José Núñez-Martínez, Marc
Portolès-Comeras, Jaume Nin-Guerrero, Paolo Dini, and Josep
Mangues-Bafalluy. Validation of the IEEE 802.11 MAC Model in
the ns3 Simulator Using the EXTREME Testbed. In Proceedings
of the 3rd International ICST Conference on Simulation Tools and

200 Bibliography

Techniques, SIMUTools ’10, pages 1–9, Brussels, Belgium, March
2010. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[BTS05] Giuseppe Bianchi, Ilenia Tinnirello, and Luca Scalia. Understanding
802.11e Contention-Based Prioritization Mechanisms and Their Co-
existence with Legacy 802.11 Stations. IEEE Network, 19(4):28–34,
July 2005.

[BV09] Roohi Banu and Tanya Vladimirova. Fault-Tolerant Encryption for
Space Applications. IEEE Transactions on Aerospace and Electronic
Systems, 45(1):266–279, January 2009.

[Cas07] Stephen L. Casner. Media Type Registration of Payload Formats
in the RTP Profile for Audio and Video Conferences. Request for
Comments 4856, Internet Engineering Task Force, March 2007.

[CDGS07] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgar-
elli. Traffic Classification Through Simple Statistical Fingerprint-
ing. ACM SIGCOMM Computer Communication Review, 37(1):5–16,
January 2007.

[CET+11] Michelle Cotton, Lars Eggert, Joseph Touch, Magnus Westerlund,
and Stuart Cheshire. Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry. Request for Comments 6335, Inter-
net Engineering Task Force, August 2011.

[CGQ09] Xi Chen, Prateek Gangwal, and Daji Qiao. Practical Rate Adap-
tation in Mobile Environments. In IEEE International Conference
on Pervasive Computing and Communications, PerCom ’09, pages
204–213. IEEE, March 2009.

[CGQ12] Xi Chen, Prateek Gangwal, and Daji Qiao. RAM: Rate Adaptation
in Mobile Environments. IEEE Transactions on Mobile Computing,
11(3):464–477, March 2012.

[CJ99] Stephen L. Casner and Van Jacobson. Compressing IP/UDP/RTP
Headers for Low-Speed Serial Links. Request for Comments 2508,
Internet Engineering Task Force, February 1999.

[CK10] Joseph Camp and Edward Knightly. Modulation Rate Adaptation
in Urban and Vehicular Environments: Cross-Layer Implementation
and Experimental Evaluation. IEEE/ACM Transactions on Network-
ing, 18(6):1949–1962, December 2010.

[CK13] Stuart Cheshire and Marc Krochmal. NAT Port Mapping Protocol
(NAT-PMP). Request for Comments 6886, Internet Engineering Task
Force, August 2013.

Bibliography 201

[CV95] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Ma-
chine Learning, 20(3):273–297, September 1995.

[CY02] Kyongkuk Cho and Dongweon Yoon. On the General BER Expres-
sion of One- and Two-Dimensional Amplitude Modulations. IEEE
Transactions on Communications, 50(7):1074–1080, July 2002.

[DCGS09] Maurizio Dusi, Manuel Crotti, Francesco Gringoli, and Luca Salgar-
elli. Tunnel Hunter: Detecting application-layer tunnels with statis-
tical fingerprinting. Computer Networks, 53(1):81–97, January 2009.

[DD12] Pralhad Deshpande and Samir R. Das. BRAVE: Bit-rate Adaptation
in Vehicular Environments. In Proceedings of the Ninth ACM In-
ternational Workshop on Vehicular Inter-networking, Systems, and
Applications, VANET ’12, pages 33–42, New York, NY, USA, June
2012. ACM.

[DNP99] Mikael Degermark, Bjorn Nordgren, and Stephen Pink. IP Header
Compression. Request for Comments 2507, Internet Engineering Task
Force, February 1999.

[ETSI00] Digital cellular telecommunications system (Phase 2+) (GSM)—
Adaptive Multi-Rate (AMR) speech transcoding (GSM 06.90 version
7.2.1 Release 1998), European Telecommunication Standards Insti-
tute Standard EN 301 704, Revision 7.2.1, April 2000.

[ETSI06] Telecommunications and Internet converged Services and Protocols
for Advanced Networking (TISPAN)—Review of available material
on QoS requirements of Multimedia Services, European Telecommu-
nications Standards Institute Standard TR 102 479, Revision 1.1.1,
February 2006.

[Fan12] Erwin Fang. Implementing On-Demand Rate Adaptation for
IEEE 802.11. Bachelor’s thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, August 2012.

[FDC84] David J. Farber, Gary S. Delp, and Thomas M. Conte. A Thinwire
Protocol for connecting personal computers to the INTERNET. Re-
quest for Comments 914, Internet Engineering Task Force, September
1984.

[FS97] Yoav Freund and Robert E Schapire. A Decision-Theoretic General-
ization of On-Line Learning and an Application to Boosting. Journal
of Computer and System Sciences, 55(1):119–139, August 1997.

[FZJJ06] Gerhard Fettweis, Ernesto Zimmermann, Volker Jungnickel, and Ed-
uard A. Jorswieck. Challenges in Future Short Range Wireless Sys-
tems. IEEE Vehicular Technology Magazine, 1(2):24–31, June 2006.

[Gar07] Vijay K. Garg. Wireless Communications and Networking. Morgan
Kaufmann, 1 edition, 2007.

202 Bibliography

[GDFM+12] José Luis García-Dorado, Alessandro Finamore, Marco Mellia,
Michela Meo, and Maurizio M. Munafo. Characterization of ISP
Traffic: Trends, User Habits, and Access Technology Impact. IEEE
Transactions on Network and Service Management, 9(2):142–155,
June 2012.

[GK08] Shyamnath Gollakota and Dina Katabi. ZigZag decoding: Combating
Hidden Terminals in Wireless Networks. In Proceedings of the 36th
ACM SIGCOMM Conference, SIGCOMM ’08, pages 159–170, New
York, NY, USA, August 2008. ACM.

[gnuradio] The GNU Software Radio. http://www.gnuradio.org. [Online, ac-
cessed 2015-04-14].

[Gör00] Norbert Görtz. Iterative source-channel decoding using soft-in/soft-
out decoders. In Proceedings of the IEEE International Symposium
on Information Theory, ISIT ’00, page 173. IEEE, June 2000.

[Göt11] Mario Göttgens. Heuristic Packet Repair for UDP/IP in the Linux
Network Stack. Bachelor’s thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, March 2011.

[Göt13] Mario Göttgens. On-Demand Feedback Rate Adaptation in the Linux
Network Stack. Master’s thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, June 2013.

[GZK05] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krish-
naswamy. Mining Data Streams: A Review. SIGMOD Record,
34(2):18–26, June 2005.

[Hen11] Martin Henze. A Machine-Learning Packet-Classification Tool for
Processing Corrupted Packets on End Hosts. Diploma thesis,
Rheinisch-Westfälische Technische Hochschule Aachen, March 2011.

[HGC10] Bo Han, Francesco Gringoli, and Luca Cominardi. Bologna: Block-
based 802.11 Transmission Recovery. In Proceedings of the 2010 ACM
Workshop on Wireless of the Students, by the Students, for the Stu-
dents, S3 ’10, pages 45–48, New York, NY, USA, September 2010.
ACM.

[Hit11] Anwar Hithnawi. An On-Demand Rate-Adaptation Mechanism for
IEEE 802.11 Networks. Master’s thesis, Rheinisch-Westfälische Tech-
nische Hochschule Aachen, December 2011.

[HJL+09] Bo Han, Lusheng Ji, Seungjoon Lee, Bobby. Bhattacharjee, and
Robert R. Miller. All Bits Are Not Equal – A Study of IEEE 802.11
Communication Bit Errors. In Proceedings of the Twenty-Eigth IEEE
Conference on Computer Communications, INFOCOM ’09, pages
1602–1610. IEEE, April 2009.

http://www.gnuradio.org

Bibliography 203

[HJL+12] Bo Han, Lusheng Ji, Seungjoon Lee, Bobby Bhattacharjee, and
Robert R. Miller. Are All Bits Equal?: Experimental Study of IEEE
802.11 Communication Bit Errors. IEEE/ACM Transactions on Net-
working, 20(6):1695–1706, December 2012.

[HOP96] Joachim Hagenauer, Elke Offer, and Lutz Papke. Iterative Decoding
of Binary Block and Convolutional cCodes. IEEE Transactions on
Information Theory, 42(2):429–445, March 1996.

[hostapd] hostapd, a User-Space Daemon for Access Point and Authentication
Servers. http://w1.fi/hostapd/. [Online, accessed 2015-04-14].

[HRFR06] Thomas R. Henderson, Sumit Roy, Sally Floyd, and George F. Riley.
ns-3 Project Goals. In Proceeding from the 2006 Workshop on Ns-2:
The IP Network Simulator, WNS2 ’06, New York, NY, USA, October
2006. ACM.

[HRNK04] Florian Hammer, Peter Reichl, Tomas Nordström, and Gernot Ku-
bin. Corrupted Speech Data Considered Useful: Improving Perceived
Speech Quality of VoIP over Error-Prone Channels. Acta acustica,
90(6):1052–1060, December 2004.

[HSG+10] Bo Han, Aaron Schulman, Francesco Gringoli, Neil Spring, Bobby
Bhattacharjee, Lorenzo Nava, Lusheng Ji, Seungjoon Lee, and Robert
Miller. Maranello: Practical Partial Packet Recovery for 802.11. In
Proceedings of the Seventh USENIX conference on Networked sys-
tems design and implementation, NSDI ’10, Berkeley, CA, USA, April
2010. USENIX Association.

[HT11] Jonathan W. Hui and Pascal Thubert. Compression Format for IPv6
Datagrams over IEEE 802.15.4-Based Networks. Request for Com-
ments 6282, Internet Engineering Task Force, September 2011.

[HVB01] Gavin Holland, Nitin Vaidya, and Paramvir Bahl. A Rate-Adaptive
MAC Protocol for Multi-Hop Wireless Networks. In Proceedings of
the 7th Annual International Conference on Mobile Computing and
Networking, MobiCom ’01, pages 236–251, New York, NY, USA, July
2001. ACM.

[HWM+14] Frederik Hermans, Hjalmar Wennerström, Liam McNamara, Chris-
tian Rohner, and Per Gunningberg. All Is Not Lost: Understanding
and Exploiting Packet Corruption in Outdoor Sensor Networks. In
Bhaskar Krishnamachari, AmyL. Murphy, and Niki Trigoni, editors,
Wireless Sensor Networks, volume 8354 of Lecture Notes in Computer
Science, pages 116–132. Springer International Publishing, 2014.

[IANA14] Internet Assigned Numbers Authority. Real-Time Transport Pro-
tocol (RTP) Parameters. http://www.iana.org/assignments/

rtp-parameters/rtp-parameters.xhtml, July 2014. [Online, ac-
cessed 2015-04-14].

http://w1.fi/hostapd/
http://www.iana.org/assignments/rtp-parameters/rtp-parameters.xhtml
http://www.iana.org/assignments/rtp-parameters/rtp-parameters.xhtml

204 Bibliography

[IANA15] Internet Assigned Numbers Authority. Assigned Internet
Protocol Numbers. http://www.iana.org/assignments/

protocol-numbers/protocol-numbers.xhtml, April 2015. [Online,
accessed 2015-04-14].

[IEEE05] IEEE Standard for Information technology—Telecommunications
and information exchange between systems—Local and metropoli-
tan area networks—Specific requirements, Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations, Amendment 8: Medium Access Control (MAC) Quality of
Service Enhancements, Institute of Electrical and Electronics Engi-
neers Standard 802.11e, Revision 2005, November 2005.

[IEEE09] IEEE Standard for Information technology—Telecommunications
and information exchange between systems—Local and metropoli-
tan area networks—Specific requirements, Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations, Amendment 5: Enhancements for Higher Throughput, Insti-
tute of Electrical and Electronics Engineers Standard 802.11n, Revi-
sion 2009, October 2009.

[IEEE11] IEEE Standard for Local and metropolitan area networks—Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs), Institute
of Electrical and Electronics Engineers Standard 802.15.4, Revision
2011, June 2011.

[IEEE12a] IEEE Standard for Ethernet, Institute of Electrical and Electronics
Engineers Standard 802.3, Revision 2012, December 2012.

[IEEE12b] IEEE Standard for Information technology—Telecommunications
and information exchange between systems—Local and metropoli-
tan area networks—Specific requirements, Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations, Institute of Electrical and Electronics Engineers Standard
802.11, Revision 2012, March 2012.

[IEEE13] IEEE Standard for Information technology—Telecommunications
and information exchange between systems—Local and metropoli-
tan area networks—Specific requirements, Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions, Amendment 4: Enhancements for Very High Throughput for
Operation in Bands below 6 GHz, Institute of Electrical and Elec-
tronics Engineers Standard 802.11ac, Revision 2013, December 2013.

[IEEE14] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks, Institute of Electrical and Electronics Engi-
neers Standard 802.1Q, Revision 2014, November 2014.

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Bibliography 205

[ISO11] Information technology – UPnP Device Architecture, International
Organization for Standardization Standard 23941-1, Revision 2,
September 2011.

[ITU01] ITU-T Recommendation P.862: Perceptual evaluation of speech qual-
ity (PESQ): An objective method for end-to-end speech quality as-
sessment of narrow-band telephone networks and speech codecs, In-
ternational Telecommunication Union Standard, February 2001.

[ITU03] ITU-T Recommendation G.114: One-way transmission time, Inter-
national Telecommunication Union Standard, May 2003.

[Jac90] Van Jacobson. Compressing TCP/IP Headers. Request for Comments
1144, Internet Engineering Task Force, February 1990.

[JB07] Kyle Jamieson and Hari Balakrishnan. PPR: Partial Packet Recovery
for Wireless Networks. In Proceedings of the 35th ACM SIGCOMM
Conference, SIGCOMM ’07, pages 409–420, New York, NY, USA,
August 2007. ACM.

[Jia06] Wenyu Jiang. Bit Error Correction without Redundant Data: a MAC
Layer Technique for 802.11 Networks. In Proceedings of the 4th In-
ternational Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks, WiOPT ’06, pages 1–8. IEEE, April
2006.

[JK09] Szymon Jakubczak and Dina Katabi. One-Size-Fits-All Wireless
Video. In Proceedings of the Eigth Workshop on Hot Topics in Net-
works, HotNets-VIII, pages 449–450, New York, NY, USA, August
2009. ACM.

[JP04] Lars-Erik Johnsson and Ghyslain Pelletier. RObust Header Compres-
sion (ROHC): A Compression Profile for IP. Request for Comments
3843, Internet Engineering Task Force, June 2004.

[JWS08] Glenn Judd, Xiaohui Wang, and Peter Steenkiste. Efficient Channel-
aware Rate Adaptation in Dynamic Environments. In Proceedings of
the Sixth International Conference on Mobile systems, applications,
and services, MobiSys ’08, pages 118–131, New York, NY, USA, June
2008. ACM.

[KKCQ06] Jongseok Kim, Seongkwan Kim, Sunghyun Choi, and Daji Qiao.
CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs.
In Proceedings of the Twenty-Fifth Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM ’06,
pages 1–11. IEEE, April 2006.

[KM97] Ad Kamerman and Leo Monteban. WaveLAN R©-II: A High-
Performance Wireless LAN for the Unlicensed Band. Bell Labs Tech-
nical Journal, 2(3):118–133, 1997.

206 Bibliography

[Koo02] Philip Koopman. 32-Bit Cyclic Redundancy Codes For Internet Ap-
plications. In Proceedings of the 32nd International Conference on
Dependable Systems and Networks, DSN ’02, pages 459–468. IEEE
Computer Society, June 2002.

[KR07] Syed Ali Khayam and Hayder Radha. Maximum-Likelihood Header
Estimation: A Cross-Layer Methodology for Wireless Multimedia.
IEEE Transactions on Wireless Communications, 6(11):3946–3954,
November 2007.

[KR13] James F. Kurose and Keith W. Ross. Computer Networking. Pearson
Education, 6th edition, 2013. International Edition.

[LAN+12] Jie Li, Andreas Aurelius, Viktor Nordell, Manxing Du, Åke Arvids-
son, and Maria Kihl. A Five Year Perspective of Traffic Pattern Evo-
lution in a Residential Broadband Access Network. In Proceedings of
the Twenty-First Future Network & Mobile Summit, FutureNet ’12.
IEEE, July 2012.

[LDP99] Lars-Åke Larzon, Mikael Degermark, and Stephen Pink. UDP Lite
for Real Time Multimedia Applications. Technical Report HPL-IRI-
1999-001, Hewlett-Packard Laboratories, April 1999.

[LDP+04] Lars-Åke Larzon, Mikael Degermark, Stephen Pink, Lars-Erik Jons-
son, and Godred Fairhurst. The Lightweight User Datagram Protocol
(UDP-Lite). Request for Comments 3828, Internet Engineering Task
Force, July 2004.

[L’E99] Pierre L’Ecuyer. Good Parameters and Implementations for Com-
bined Multiple Recursive Random Number Generators. Operations
Research, 47(1):159–164, January 1999.

[Led12] Matthias Lederhofer. Classifying Corrupted Network Packets for
Error-Tolerant Streaming Applications. Diploma thesis, Rheinisch-
Westfälische Technische Hochschule Aachen, August 2012.

[LH06] Mathieu Lacage and Thomas R Henderson. Yet Another Network
Simulator. In Proceedings of the 2006 Workshop on ns-2, the IP
Network Simulator, WNS2 ’06, New York, NY, USA, October 2006.
ACM.

[linphone] Linphone, an open-source VoIP software. http://www.linphone.

org. [Online, accessed 2015-04-14].

[LKK08] Kate Ching-Ju Lin, Nate Kushman, and Dina Katabi. ZipTx: Har-
nessing Partial Packets in 802.11 Networks. In Proceedings of the 14th
Annual International Conference on Mobile Computing and Network-
ing, MobiCom ’08, pages 351–362, New York, NY, USA, September
2008. ACM.

http://www.linphone.org
http://www.linphone.org

Bibliography 207

[LL04] Patrick Pak-kit Lam and Soung C. Liew. UDP-Liter: An Improved
UDP Protocol for Real-Time Multimedia Applications over Wireless
Links. In Proceedings of the 1st International Symposium on Wireless
Communication Systems, ISWCS ’04, pages 314–318. IEEE, Septem-
ber 2004.

[LL06] Marc Liberatore and Brian Neil Levine. Inferring the Source of En-
crypted HTTP Connections. In Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS ’06, pages
255–263, New York, NY, USA, November 2006. ACM.

[LMT04] Mathieu Lacage, Mohammad Hossein Manshaei, and Thierry
Turletti. IEEE 802.11 Rate Adaptation: A Practical Approach. In
Proceedings of the 7th ACM International Symposium on Modeling,
analysis and Simulation of Wireless and Mobile systems, MSWiM ’04,
pages 126–134, New York, NY, USA, October 2004. ACM.

[MBK05] Allen Miu, Hari Balakrishnan, and Can Emre Koksal. Improving
Loss Resilience with Multi-Radio Diversity in Wireless Networks. In
Proceedings of the 11th Annual International Conference on Mobile
Computing and Networking, MobiCom ’05, pages 16–30, New York,
NY, USA, August 2005. ACM.

[MD90] Jeffrey Mogul and Steve Deering. Path MTU Discovery. Request for
Comments 1191, Internet Engineering Task Force, November 1990.

[MH07] Matt Mathis and John W. Heffner. Packetization Layer Path MTU
Discovery. Request for Comments 4821, Internet Engineering Task
Force, March 2007.

[minstrel] The Minstrel Rate Control Algorithm. http://linuxwireless.

org/en/developers/Documentation/mac80211/RateControl/

minstrel. [Online, accessed 2015-04-14].

[MJ93] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New
Architecture for User-Level Packet Capture. In Proceedings of the
USENIX Winter 1993 Technical Conference, USENIX ’93. USENIX
Association, January 1993.

[MLKD10] Cédric Marin, Yann Leprovost, Michael Kieffer, and Pierre Duhamel.
Robust MAC-Lite and Soft Header Recovery for Packetized Mul-
timedia Transmission. IEEE Transactions on Communications,
58(3):775–784, March 2010.

[MM13] Travis Mandel and Jens Mache. Practical Error Correction for
Resource-Constrained Wireless Networks: Unlocking the Full Power
of the CRC. In Proceedings of the 11th ACM Conference on Em-
bedded Networked Sensor Systems, SenSys ’13, pages 3:1–3:14, New
York, NY, USA, November 2013. ACM.

http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel
http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel
http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel

208 Bibliography

[MPC+10] Luca Mottola, Gian Pietro Picco, Matteo Ceriotti, Ştefan Gună, and
Amy L. Murphy. Not All Wireless Sensor Networks Are Created
Equal: A Comparative Study on Tunnels. ACM Transactions on
Sensor Networks, 7(2):15:1–15:33, September 2010.

[MSA06] Patrick Murphy, Ashu Sabharwal, and Behnaam Aazhang. Design
of WARP: A Flexible Wireless Open-Access Research Platform. In
Proceedings of the 14th European Signal Processing Conference, EU-
SIPCO ’06. European Association for Signal Processing (EURASIP),
September 2006.

[MZ05] Andrew W. Moore and Denis Zuev. Internet Traffic Classification
Using Bayesian Analysis Techniques. SIGMETRICS Performance
Evaluation Review, 33(1):50–60, June 2005.

[NBBB98] Kathleen Nichols, Steven Blake, Fred Baker, and David L. Black.
Definition of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers. Request for Comments 2474, Internet Engineering
Task Force, December 1998.

[netem] The Linux Foundation. netem, a Network Emulator.
http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem. [Online, accessed 2015-04-14].

[NOCW07] Sam Nguyen, Clayton Okino, Loren Clare, and William Walsh.
Space-Based Voice over IP Networks. In Proceedings of the Twenty-
Eighth IEEE Aerospace Conference, Aeroconf ’07, pages 1–11. IEEE,
March 2007.

[ns3] ns-3, a discrete-event network simulator for Internet systems. http:

//www.nsnam.org/. [Online, accessed 2015-04-14].

[ns3man] ns-3.9 Manual. http://www.nsnam.org/docs/release/3.9/

manual/manual.html. [Online, accessed 2015-04-14].

[Orl12] David Orlea. Error Tolerance for the Real-Time Transport Pro-
tocol (RTP). Bachelor’s thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, March 2012.

[ortp] oRTP, A Real-Time Transport Protocol (RTP, RFC3550) library.
http://www.linphone.org/technical-corner/ortp/. [Online, ac-
cessed 2015-04-14].

[OZL14] Jiajue Ou, Yuanqing Zheng, and Mo Li. MISC: Merging Incorrect
Symbols using Constellation Diversity for 802.11 Retransmission. In
Proceedings of the Thirty-Third IEEE Conference on Computer Com-
munications, INFOCOM ’14, pages 2472–2480. IEEE, April 2014.

[PB61] William W. Peterson and David T. Brown. Cyclic Codes for Error
Detection. Proceedings of the IRE, 49(1):228–235, January 1961.

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.nsnam.org/
http://www.nsnam.org/
http://www.nsnam.org/docs/release/3.9/manual/manual.html
http://www.nsnam.org/docs/release/3.9/manual/manual.html
http://www.linphone.org/technical-corner/ortp/

Bibliography 209

[PBB05] Michal Przybylski, Bartosz Belter, and Artur Binczewski. Shall we
worry about Packet Reordering? Computational Methods in Science
and Technology, 11(2):141–146, 2005.

[PEG12] Oscar Puñal, Humberto Escudero, and James Gross. Power Load-
ing: Candidate for Future WLANs? In Proceedings of the Thirteenth
International Symposium on a World of Wireless, Mobile and Multi-
media Networks, WoWMoM ’12. IEEE, June 2012.

[Pel05] Ghyslain Pelletier. RObust Header Compression (ROHC): Profiles for
User Datagram Protocol (UDP) Lite. Request for Comments 4019,
Internet Engineering Task Force, April 2005.

[PG12] Carlos Pignataro and Fernando Gont. Formally Deprecating Some
IPv4 Options. Request for Comments 6814, Internet Engineering
Task Force, November 2012.

[PH09] Guangyu Pei and Tom Henderson. Validation of the ns-3 802.11b
PHY model. Technical report, Boeing Research & Technology, Seat-
tle, WA, USA, May 2009.

[PH10] Guangyu Pei and Tom Henderson. Validation of OFDM error rate
model in ns-3. Technical report, Boeing Research & Technology, Seat-
tle, WA, USA, 2010.

[PHW+10] Ioannis Pefkianakis, Yun Hu, Starsky H.Y. Wong, Hao Yang, and
Songwu Lu. MIMO Rate Adaptation in 802.11n Wireless Networks.
In Proceedings of the Sixteenth Annual International Conference on
Mobile Computing and Networking, MobiCom ’10, pages 257–268,
New York, NY, USA, September 2010. ACM.

[Pos81] Jon Postel. Internet Protocol. Request for Comments 791, Internet
Engineering Task Force, September 1981.

[Pro85] John Proakis. Digital Communications. McGraw-Hill, international
student edition, 1985.

[PSJW13] Ghyslain Pelletier, Kristofer Sandlund, Lars-Erik Jonsson, and
Mark A. West. RObust Header Compression (ROHC): A Profile
for TCP/IP (ROHC-TCP). Request for Comments 6846, Internet
Engineering Task Force, January 2013.

[PT87] Michael B. Pursley and D. J. Taipale. Error Probabilities for Spread-
Spectrum Packet Radio with Convolutional Codes and Viterbi De-
coding. IEEE Transactions on Communications, 35(1):1–12, January
1987.

[QCJS03] Daji Qiao, Sunghyun Choi, Amit Jain, and Kang G. Shin. MiSer:
An Optimal Low-energy Transmission Strategy for IEEE 802.11a/h.
In Proceedings of the 9th Annual International Conference on Mobile

210 Bibliography

Computing and Networking, MobiCom ’03, pages 161–175, New York,
NY, USA, September 2003. ACM.

[RFB01] K. K. Ramakrishnan, Sally Floyd, and David L. Black. The Addi-
tion of Explicit Congestion Notification (ECN) to IP. Request for
Comments 3168, Internet Engineering Task Force, September 2001.

[Rij94] Anil Rijsinghani. Computation of the Internet Checksum via Incre-
mental Update. Request for Comments 1624, Internet Engineering
Task Force, May 1994.

[Riv97] Ronald L. Rivest. All-or-Nothing Encryption and the Package Trans-
form. In Eli Biham, editor, Fast Software Encryption, volume 1267 of
Lecture Notes in Computer Science, pages 210–218. Springer Berlin
Heidelberg, 1997.

[RKZG08] Kishore Ramachandran, Ravi Kokku, Honghai Zhang, and Marco
Gruteser. Symphony: Synchronous Two-phase Rate and Power Con-
trol in 802.11 WLANs. In Proceedings of the Sixth International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’08,
pages 132–145, New York, NY, USA, June 2008. ACM.

[Ros08] Jonathan Rosenberg. UDP and TCP as the New Waist of the Internet
Hourglass. Internet-draft, Internet Engineering Task Force, February
2008.

[SAAW11] Florian Schmidt, Muhammad Hamad Alizai, Ismet Aktaş, and Klaus
Wehrle. Refector: Heuristic Header Error Recovery for Error-
Tolerant Transmissions. In Proceedings of the Seventh COnference
on emerging Networking EXperiments and Technologies, CoNEXT
’11, pages 22:1–22:12, New York, NY, USA, December 2011. ACM.

[SC03] Henning Schulzrinne and Stephen L. Casner. RTP Profile for Audio
and Video Conferences with Minimal Control. Request for Comments
3551, Internet Engineering Task Force, July 2003.

[SCFJ03] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van
Jacobson. RTP: A Transport Protocol for Real-Time Applications.
Request for Comments 3550, Internet Engineering Task Force, July
2003.

[Sch96] Bruce Schneier. Applied Cryptography, Second Edition: Protocols,
Algorithms, and Source Code in C. John Wiley & Sons, 2nd edition,
1996.

[SCHW14] Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle.
HotBox: Testing Temperature Effects in Sensor Networks. Technical
Report AIB-2014-14, Rheinisch-Westfälische Technische Hochschule
Aachen, Department of Computer Science, December 2014.

Bibliography 211

[SCW13] Florian Schmidt, Matteo Ceriotti, and Klaus Wehrle. Bit Error Dis-
tribution and Mutation Patterns of Corrupted Packets in Low-power
Wireless Networks. In Proceedings of the 8th ACM International
Workshop on Wireless Network Testbeds, Experimental Evaluation &
Characterization, WiNTECH ’13, pages 49–56, New York, NY, USA,
September 2013. ACM.

[SHP+12] Florian Schmidt, Anwar Hithnawi, Oscar Puñal, James Gross, and
Klaus Wehrle. A Receiver-Based 802.11 Rate Adaptation Scheme
with On-Demand Feedback. In Proceedings of the 23rd International
Symposium on Personal Indoor and Mobile Radio Communications,
PIMRC ’12, pages 399–405. IEEE, August 2012.

[SHW14] Florian Schmidt, Martin Henze, and Klaus Wehrle. Piccett: Protocol-
Independent Classification of Corrupted Error-Tolerant Traffic. In
Proceedings of the Nineteenth IEEE Symposium on Computers and
Communications, ISCC ’14, pages 1–7. IEEE, June 2014.

[SKSK02] Bahareh Sadeghi, Vikram Kanodia, Ashutosh Sabharwal, and Ed-
ward W. Knightly. Opportunistic Media Access for Multirate Ad
Hoc Networks. In Proceedings of the 8th Annual International Con-
ference on Mobile Computing and Networking, MobiCom ’02, pages
24–35, New York, NY, USA, September 2002. ACM.

[SMW07] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of
the Scalable Video Coding Extension of the H.264/AVC Standard.
IEEE Transactions on Circuits and Systems for Video Technology,
17(9):1103–1120, September 2007.

[SOW13a] Florian Schmidt, David Orlea, and Klaus Wehrle. A Heuristic Header
Error Recovery Scheme for RTP. In Proceedings of the 10th Annual
IEEE/IFIP Conference on Wireless On-Demand Network Systems
and Services, WONS ’13. IEEE, March 2013.

[SOW13b] Florian Schmidt, David Orlea, and Klaus Wehrle. Support for Error
Tolerance in the Real-Time Transport Protocol. Technical Report
AIB-2013-19, Rheinisch-Westfälische Technische Hochschule Aachen,
Department of Computer Science, December 2013.

[SSCN10] Souvik Sen, Naveen Santhapuri, Romit Roy Choudhury, and Srihari
Nelakuditi. AccuRate: Constellation Based Rate Estimation in Wire-
less Networks. In Proceedings of the Seventh USENIX conference on
Networked systems design and implementation, NSDI ’10, Berkeley,
CA, USA, April 2010. USENIX Association.

[SSGA10] Arne Schmitz, Marc Schinnenburg, James Gross, and Ana Aguiar.
Channel Modeling. In Klaus Wehrle, Mesut Güneş, and James Gross,
editors, Modeling and Tools for Network Simulation, chapter 11,
pages 191–234. Springer Berlin Heidelberg, 2010.

212 Bibliography

[SSJ+08] Markus Schnell, Markus Schmidt, Manuel Jander, Tobias Albert, Ralf
Geiger, Vesa Ruoppila, Per Ekstrand, and Grill Bernhard. MPEG-4
Enhanced Low Delay AAC – A New Standard for High Quality Com-
munication. In Proceedings of the 125th Audio Engineering Society
Convention. Audio Engineering Society, October 2008.

[SWLX07] Johan Sjoberg, Magnus Westerlund, Ari Lakaniemi, and Qiaobing
Xie. RTP Payload Format and File Storage Format for the Adaptive
Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB)
Audio Codecs. Request for Comments 4867, Internet Engineering
Task Force, April 2007.

[SWT01] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing
Analysis of Keystrokes and Timing Attacks on SSH. In Proceedings
of the 10th USENIX Security Symposium, SSYM ’01, Berkeley, CA,
USA, August 2001. USENIX Association.

[Tai92] Chen-To Tai. Complementary Reciprocity Theorems in Electromag-
netic Theory. IEEE Transactions on Antennas and Propagation,
40(6):675–681, June 1992.

[Tor04] Linus Torvalds. LKML archive: How to use floating point in a mod-
ule? https://lkml.org/lkml/2004/5/31/5, May 2004. [Online,
accessed 2015-04-14].

[TW11] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks.
Pearson Education, 5th edition, 2011. International Edition.

[USRP] Ettus Research. The Universal Software Radio Peripheral. http:

//www.ettus.com. [Online, accessed 2015-04-14].

[VBJ09] Mythili Vutukuru, Hari Balakrishnan, and Kyle Jamieson. Cross-
Layer Wireless Bit Rate Adaptation. In Proceedings of the 37th ACM
SIGCOMM Conference, SIGCOMM ’09, pages 3–14, New York, NY,
USA, August 2009. ACM.

[Vit71] Andrew J. Viterbi. Convolutional Codes and Their Performance
in Communication Systems. IEEE Transactions on Communication
Technology, 19(5):751–772, October 1971.

[VVT12] Jean-Marc Valin, Koen Vos, and Timothy B. Terriberry. Definition
of the Opus Audio Codec. Request for Comments 6716, Internet
Engineering Task Force, September 2012.

[War07] Henry S. Warren, Jr. The Quest for an Accelerated Population Count.
In Andy Oram and Greg Wilson, editors, Beautiful Code, chapter 10,
pages 147–160. O’Reilly Media, 2007.

https://lkml.org/lkml/2004/5/31/5
http://www.ettus.com
http://www.ettus.com

Bibliography 213

[WBBJ67] Paul Watzlawick, Janet Beavin Bavelas, and Don Jackson. Some Ten-
tative Axioms of Communication. In Pragmatics of Human Commu-
nication – A Study of Interactional Patterns, Pathologies and Para-
doxes, pages 48–71. W. W. Norton, 1967.

[WCB+13] Dan Wing, Stuart Cheshire, Mohamed Boucadair, Reinaldo Penno,
and Paul Selkirk. Port Control Protocol (PCP). Request for Com-
ments 6887, Internet Engineering Task Force, April 2013.

[WCN+14] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian
Goldberg. Effective Attacks and Provable Defenses for Website Fin-
gerprinting. In Proceedings of the 23rd USENIX Security Symposium,
USENIX Security ’14, pages 143–157. USENIX Association, August
2014.

[WEKJ11] Ye-Kui Wang, Roni Even, Tom Kristensen, and Randell Jesup. RTP
Payload Format for H.264 Video. Request for Comments 6184, Inter-
net Engineering Task Force, May 2011.

[Wel84] Terry A. Welch. A Technique for High-Performance Data Compres-
sion. IEEE Computer, 17(6):8–19, June 1984.

[WKHW02] Andreas Willig, Martin Kubisch, Christian Hoene, and Adam Wolisz.
Measurements of a Wireless Link in an Industrial Environment Using
an IEEE 802.11-Compliant Physical Layer. IEEE Transactions on
Industrial Electronics, 49(6):1265–1282, December 2002.

[WKSK07] Grace R. Woo, Pouya Kheradpour, Dawei Shen, and Dina Katabi.
Beyond the Bits: Cooperative Packet Recovery Using Physical Layer
Information. In Proceedings of the 13th Annual International Con-
ference on Mobile Computing and Networking, MobiCom ’07, pages
147–158, New York, NY, USA, September 2007. ACM.

[WPY07] Cheng-Xiang Wang, Matthias Pätzold, and Qi Yao. Stochastic
Modeling and Simulation of Frequency-Correlated Wideband Fading
Channels. IEEE Transactions on Vehicular Technology, 56(3):1050–
1063, May 2007.

[WSBL03] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay
Luthra. Overview of the H.264/AVC Video Coding Standard.
IEEE Transactions on Circuits and Systems for Video Technology,
13(7):560–576, July 2003.

[WYLB06] Starsky H. Y. Wong, Hao Yang, Songwu Lu, and Vaduvur Bhargha-
van. Robust Rate Adaptation for 802.11 Wireless Networks. In Pro-
ceedings of the 12th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’06, pages 146–157, New York, NY,
USA, September 2006. ACM.

214 Bibliography

[YV85] Joseph H. Yuen and Q. D. Vo. In Search of a 2-dB Coding Gain. TDA
Progress Report 42-83, NASA Jet Propulsion Laboratory, Communi-
cations Systems Research Section, July–September 1985.

[ZL77] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequen-
tial Data Compression. IEEE Transactions on Information Theory,
23(3):337–343, May 1977.

[ZvM04] Xiaoming Zhou and Piet van Mieghem. Reordering of IP Packets in
Internet. In Chadi Barakat and Ian Pratt, editors, Passive and Active
Network Measurement, volume 3015 of Lecture Notes in Computer
Science, pages 237–246. Springer Berlin Heidelberg, 2004.

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Challenges in Heuristic Header Error Recovery
	1.2 Target Environment and Observations
	1.3 Research Questions
	1.4 Contributions
	1.4.1 Protocol-Specific Heuristic Header Error Recovery
	1.4.2 Protocol-Independent Heuristic Error Recovery
	1.4.3 Rate Adaptation for ACK-Less Communications

	1.5 Heuristic Header Error Recovery
	1.6 A Note on Previously Published and Joint Work
	1.7 Outline

	2 Background and Related Work
	2.1 Internet Protocols
	2.2 On Errors
	2.3 On Checksums
	2.4 On Acknowledgments
	2.5 Wireless LAN
	2.6 Related Work
	2.6.1 Error Tolerance
	2.6.2 Reducing Retransmissions
	2.6.3 Header Compression

	3 Refector: Protocol-Specific Heuristic Header Error Recovery
	3.1 Introduction
	3.2 Refector for Stateless Protocols
	3.2.1 Header Fields Categorization
	3.2.2 Recovery of Vital Fields
	3.2.2.1 Heuristic Recovery of Header Fields
	3.2.2.2 Port Allocation
	3.2.2.3 Analytical Approximation of Port Selection Performance

	3.2.3 Implementation
	3.2.4 Evaluation over 802.11
	3.2.4.1 Experimental Setup
	3.2.4.2 Influence of Packet Size on Packet Loss
	3.2.4.3 Packet Delivery Rate
	3.2.4.4 Misattribution
	3.2.4.5 Encryption
	3.2.4.6 Performance

	3.2.5 Summary

	3.3 Use Case: Refector-ISCD
	3.3.1 Introduction to ISCD
	3.3.2 Experimental Setup
	3.3.3 Packet-Switched ISCD
	3.3.4 Refector-ISCD
	3.3.5 Summary

	3.4 Refector for Stateful Protocols
	3.4.1 The Real-Time Transport Protocol
	3.4.2 Header Fields Categorization
	3.4.3 Stream Identification: The Learner–Predictor Scheme
	3.4.4 Implementation for RTP in libortp
	3.4.5 Evaluation
	3.4.5.1 Experimental Setup
	3.4.5.2 Misattribution
	3.4.5.3 Field Errors
	3.4.5.4 Reduction of Misattribution
	3.4.5.5 Markov Chain Model Performance

	3.4.6 Summary

	3.5 Summary and Discussion

	4 Protocol-Independent Heuristic Header Error Repair
	4.1 Introduction and Motivation
	4.2 Design
	4.2.1 Design Considerations
	4.2.2 Algorithmic Design

	4.3 Implementation
	4.3.1 Integration into the Network Stack
	4.3.2 Repairing Header Contents
	4.3.3 Protocol Adaptation

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Classification Accuracy
	4.4.3 Classification Speed
	4.4.4 Classifier Convergence Speed
	4.4.5 Summary

	4.5 Classification via Extrinsic Factors: Size and Inter-Arrival Time
	4.6 Conclusion

	5 OFRA: Rate Adaptation for 802.11 Networks Without Acknowledgments
	5.1 Introduction and Motivation
	5.1.1 The Role of ACKs in Data Communications
	5.1.2 Conceptual and Practical Considerations
	5.1.3 Summary

	5.2 Concept
	5.2.1 Scarcity of Information and Provision of Feedback
	5.2.2 When to Send Feedback: Choice of Optimal Rates
	5.2.2.1 Modulation
	5.2.2.2 Coding
	5.2.2.3 Throughput

	5.2.3 How to Send Feedback: A New MAC Frame Type

	5.3 Related Work
	5.4 Implementation
	5.5 Evaluation
	5.5.1 Simulation Model
	5.5.2 Simulation Setup and Topology
	5.5.3 Comparison Algorithms
	5.5.4 Evaluation results
	5.5.4.1 Throughput-Related Metrics
	5.5.4.2 Rate Selection Accuracy
	5.5.4.3 Error Burst Lengths
	5.5.4.4 Summary

	5.6 Extensions and Future Works
	5.7 Conclusion

	6 Conclusion
	6.1 Contributions and Results
	6.2 Future Work
	6.3 Final Remarks

	A Analytical Approximation for Port Choice Misattributions
	B BER Calculation for 16- and 64-QAM
	Abbreviations and Acronyms
	Bibliography

