Representation Learning for Resource Usage Prediction

Florian Schmidt
NEC Laboratories Europe
florian.schmidt@neclab.eu

1 INTRODUCTION

Creating a model of a computer system that can be used for tasks
such as predicting future resource usage and detecting anomalies
is a challenging problem. Most current systems rely on heuristics
and overly simplistic assumptions about the workloads and system
statistics. These heuristics are typically a one-size-fits-all solution
so as to be applicable in a wide range of applications and systems
environments. This limitation is all the more striking considering
the wide range of problems that could be approached with a more
sophisticated model of a computing system: for example, resource
allocators, both process schedulers in OSs and orchestrators in
clusters[5, 7, 9, 15], use simple heuristics, and still often struggle to
get performance right[11, 12]; and monitoring systems whose objec-
tive is the detection of anomalies have used some machine-learning
approaches in network-based scenarios[2, 14, 16], but much less
so in the more systems-heavy domain. Tailoring the prediction
models to specific situations, however, can be extremely complex:
they have to take into account the interplay of systems components
and concurrently running heterogeneous applications, while being
able to adapt to a dynamically and often abruptly changing state of
the system. Considering developing generic heuristics is already
an extremely time-consuming task, creating tailor-made solutions
by hand is rarely worth the effort.

However, there are several recent developments that bring us
closer to developing systems models that could perform much better
than existing generic methods based on simple heuristics. Machine
learning is becoming more effective and efficient at learning from
large amounts of data. Moreover, we have a much better under-
standing of ways to embed heterogeneous feature types (categor-
ical, numerical, structured, temporal) into a joint representation
amenable to downstream tasks. If we extract and collect the right
input data, we may be able to automatically create tailor-made
models that outperform generic heuristics.

With this paper, we present our ongoing work of integrating
systems telemetry ranging from standard resource usage statistics
to kernel and library calls of applications into a machine learning
model. Intuitively, such a ML model approximates, at any point
in time, the state of a system and allows us to solve tasks such
as resource usage prediction and anomaly detection. To achieve
this goal, we leverage readily-available information that does not
require any changes to the applications run on the system. We
train recurrent neural networks such as Long Short-Term Memory
(LSTM) neural networks [8] to learn a model of the system under
consideration. As a proof of concept, we train models specifically
to predict future resource usage of running applications.

2 DATA COLLECTION

To learn a model of a system that is good at predicting future
resource usage, we need to collect data about the present. One

Mathias Niepert
NEC Laboratories Europe
mathias.niepert@neclab.eu

Felipe Huici
NEC Laboratories Europe
felipe.huici@neclab.eu

obvious approach is to collect data about the resources that we want
to predict such as CPU and memory usage statistics. This follows the
idea that, in many cases, the previous values of resource usage will
have at least some influence on current resource usage. For example,
memory consumption will often increase or decrease gradually
over time. CPU usage is often more spiky, but even here, for many
processes, phases of low activity and high activity will be apparent.
Such resource usage information is easily available on Unix-like
systems; however, it is generally accounted for on a per-process
basis. This is useful for process scheduling but for more coarse-
grained scheduling of jobs or services, which comprise several
processes run in sequence or in parallel, we will need aggregate
measurements. For this, we monitor the process group, that is, all
processes spawned by one initial process (that do not specifically
request to leave the group). Aggregation is slightly cumbersome
because there is no easy way to look up all processes belonging to a
group given the group ID; it instead requires traversing all processes
and asking them for the process group they belong to. This, and
the resource information, can be collected from by reading it from
/proc/<pid>/stat. Alternatively, a new cgroup can be created
and the initial process spawned into it. The resource requirements
of the process group are then the resources used by the cgroup.

However, these high-level usage statistics alone provide no deeper
insights into the state of a process. It would be useful to have at
least a rough understanding of what a process “is doing" at runtime.
Unfortunately, the possibilities here are limited if we want to stay
generic and not require ancillary or internal information that is
specific to a certain problem domain (such as information about
input data), or requiring specific compiling or linking steps. Using
a profiler to measure which functions are being run for how long,
for instance, requires a symbol table which is not always available
(stripped). There are options, however, to inspect program behavior
without requiring such additional information. By analyzing the
system calls that a program performs, we can get a rough under-
standing of what a process is doing and this information is always
available, because it does not rely on code annotation or additional
symbols. Some system calls also have an obvious relationship with
certain kinds of resources. For example, the write, read and similar
system calls work on files or sockets, which translates into disk or
network I/O. If we want to predict I/O, the relationship is obvious;
but even for CPU usage, there is a strong relationship: for example,
disk I/O often correlates with low CPU usage, since the process is
waiting on I/O accesses to the finished.

System calls are also easily traced: strace[10] is a standard tool
available on Unix-like systems, and these days, its overhead is low
- a few percent when a moderately high number of system calls
occurs, to virtually none when there are no system calls happening.
In case of workloads with extremely high numbers of system calls,
perf[1] can be used to sample system calls instead of tracing every
single one, further reducing the overhead. Conversely, if a higher

SysML’18, February 2018, Stanford, CA, USA

E> RSS
Mem
M Dis kwnte

open () e Emb1
open () Embz

mmap () mmap () :
write() write() . ° Emb
n

Florian Schmidt, Mathias Niepert, and Felipe Huici

CPU
RSS
CPUy4;
DlSkerte RSSH-l
Emb, :t+1
Embz Diskyrite,t+i
Em

Figure 1: To predict resource usage, we collect typical telemetry data (top left), as well as the application’s system calls (bottom
left), over a time period t. The variable number of calls is transformed into a fixed-size vector via a word embedding. The two
vectors are combined and used as input for an LSTM that then predicts the resource usage at some future time period ¢ + i.

level of detail is required, 1trace[3] can be used instead to catch
all library interactions. As a proof of concept, we developed a ML
model that integrates usage statistics and sequences of system calls
into a joint representations.

3 DATA PREPROCESSING

In order to prepare the data such as usage statistics as input for
the ML models, we need to discretize it into time intervals for
several reasons. First, some data only makes sense as values over a
time period: what was the CPU utilization in the last second? How
many bytes were written to disk? Second, for the eventual goal
of resource allocation, we will also have to predict resource usage
over a a time period that the scheduler uses as time slice. Finally,
calculating each resource usage over a certain time period provides
us a fixed-size value: each information can be interpreted as a single
value which then can all be combined into an input vector of fixed
size. For system calls, however, such a fixed-size representation is
not straightforward to generate. System calls occur at (seemingly)
random times and are discrete events as opposed to continuous
numerical values. Within a time period of a second thousands of
system calls, or none, can occur. Fortunately, to transform sequences
of system calls into a fixed-sized vector representation, we can
use representation learning approaches for sequence data such
as the word2vec skip-gram model [13]. Instead of applying these
representation learning approaches to sequences of words to learn
meaningful vector representations, we can apply these methods to
sequences of system calls (and also other types of event sequences
occurring a system) to learn representations of these events. To
collect a corpus of system call sequences, we ran strace[10] on the
various types of applications run on the system under consideration.
We then used that data to learn system call embeddings through a
model similar to the skip-gram model [13]. As a result, we can take
all system calls occurring within a time period, interpret them as a
“sentence,’ and use the event embeddings to create a fixed-size vector
representation. Since we now have a fixed-sized representation of
the resource usage statistics and a fixed-size representation for
system calls, we can directly use this data to train a ML systems
model, as shown in Figure 1 that depicts the overall architecture.

4 NEURAL NETWORKS FOR SYSTEMS
MODELING

The objective of this work is to learn and maintain a model of a
computing system on a particular level of abstraction. In the end, all

—_ 0.2 T T ‘ T T T
w0175 | 0@ ®-0 o @& oo
s @
4 0.15 Y
§ 0.125£
@ 0.1 Y
Lo O .- ®-.g O --_-@ - - ___
5 00750 @ ® L4 b
© 0.05 History taken into account
B 1second - @ -
[L
& 002 | 10seconds - ® -
0
1 2 3 4 5 6 7 8 10 15

Prediction into the future [seconds]

Figure 2: Looking farther into the future tends to increase
the prediction error, but taking more history into account
mitigates this effect.

systems are state-based and, given a current state, we want to use
the model of the system to make predictions about its and its applica-
tions future behavior. Several recent neural network based machine
learning architectures maintain some sort of internal state. Exam-
ples are recurrent networks such as LSTMs [8] and variants [4],
memory networks [17, 18], and neural Turing machines [6], to name
but a few. We are taking advantage of these methods by developing
a system model that maintains a vector (hidden) representation of
the current state of the system and is trained so as to minimize
the expected error (here: the root-mean-square error (RMSE)) of
predicting future resource usage. To keep the model simple and
for the use case of resource usage prediction, we train an LSTM
with the collected and preprocessed data consisting of past usage
statistics and system calls. The learning of system calls embeddings
can be performed as a preprocessing step or within an end-to-end
architecture.

We conducted some preliminary experiments by collecting sys-
tem calls from various applications to create the system call corpus.
We then collected the resource usage and system calls of a scientific
computing toolchain that executed a number of bash and python
scripts, which interleaved I/O- and CPU-heavy phases. Finally, we
embedded the system calls and trained an LSTM with the data. The
model is trained to minimize the RMSE of the CPU usage (as a
value between 0 and 1) i seconds into the future. Figure 2 shows the
results, varying both how far to predict into the future, and how
much history to take into account for the prediction.

Acknowledgments—This project has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 761592.

Representation Learning for Resource Usage Prediction SysML’18, February 2018, Stanford, CA, USA

REFERENCES Principles (SOSP *09). ACM, New York, NY, USA, 261-276. https:/doi.org/10.

[1] [n.d.]. perf: Linux profiling with performance counters. https://perf.wikikernel. 1145/1629575.1629601

org. ([n. d.]). [10] Paul Kranenburg, Dmitry Levin, et al. [n. d.]. strace: Linux syscall tracer. https:
[2] A.L.Buczak and E. Guven. 2016. A Survey of Data Mining and Machine Learning //stracgm/. ([n. d])
ean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,
[11] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Qué

Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys >
Tutorials 18, 2 (Secondquarter 2016), 1153-1176. _https://doi.org/10.1109/COMST. and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade of Wasted Cores.

2015.2494502 In Proceedings of the Eleventh European Conference on Computer Systems (EuroSys
[3] Juan Cespedes et al. [n. d.]. ltrace: A library call tracer. http://www.ltrace.org/. 16). ACM, New York, NY, USA, Article 1, 16 pages. https://doi.org/10.1145/
([n. d.]). 2901318.2901326
' [12] Anshul Makkar. 2016. Scope and Performance of Credit-2 Scheduler. In Xen

[4

flaa

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. > :
2016. Associative Long Short-Term Memory. In Proceedings of The 33rd Interna- Project De.veloper Summit. .

tional Conference on Machine Learning. 1986-1994. T(?mgs Mikolov, Ilya Sqtskever, Kai Chen, Greg S Corradf), and]e(f]?ean.. 2013.
[5] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Dlstnbutet.i represer}tatlons 9f words ar}d phrases and their compositionality. In
and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple Advances in neural information processing systems. 3111-3119.

=
&

Resource Types. In Proceedings of the 8th USENIX Conference on Networked Systems [14] Taeshik Shon and Jongsub Moon. 2007. A Hybrid Machine Learning Approach
Design and Implementation (NSDI'11). USENIX Association, Berkeley, CA, USA, to Network Anorrfa.ly Detection. Inf. Sci. 177, 18 (Sept. 2007), 3799-3821. _https:
323-336. http://dlacm.org/citation.cfm?id=1972457.1972490 //doi.org/10.1016/j.ins.2007.03.025) 4
[6] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing Machines. [15] Chandandeep Singh Pabla. 2009. Completely Fair Scheduler. Linux Journal 184
CoRR abs/1410.5401 (2014). (Aug. 2009).) ‘
[7] Ryan Hnarakis. 2013. In Perfect Xen: A Performance Study of the Emerging Xen [16] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using

Machine Learning for Network Intrusion Detection. In Proceedings of the 2010 [EEE

Scheduler. Master’s thesis. California Polytechnic State University.
Y 24 Symposium on Security and Privacy (SP ’10). IEEE Computer Society, Washington,

[8] Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory. A
Neural Comput. 9, 8 (Nov. 1997), 1735-1780. https://doi.org/10.1162/nec0.1997.9. DC, USA, 305-316. https://doi.org/10.1109/SP.2010.25

8.1735 [17] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. 2015. End-
Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and To-End Memory Networks. In Advances in Neural Information Processing Systems.

Andrew Goldberg. 2009. Quincy: Fair Scheduling for Distributed Computing 2440-2448.

Clusters. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems [18] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory Networks.
CoRR abs/1410.3916 (2014).

=
X0

