
uniprof: Transparent Unikernel
Performance Profiling & Debugging

Florian Schmidt, Research Scientist, NEC Europe Ltd.

2

Unikernels?

▌Faster, smaller, better!

3

Unikernels?

▌Faster, smaller, better!

▌But ever heard this?

Unikernels are hard to debug.
Kernel debugging is horrible!

c
li
p
 a

rt
s
:

c
li
p
p
ro

je
c
t.

in
fo

4

Unikernels?

▌Faster, smaller, better!

▌But ever heard this?

▌Then you might say

Unikernels are hard to debug.
Kernel debugging is horrible!

But that’s not really true!
Unikernels are a single linked binary.
They have a shared address space.

You can just use gdb!

c
li
p
 a

rt
s
:

c
li
p
p
ro

je
c
t.

in
fo

5

Unikernels?

▌Faster, smaller, better!

▌But ever heard this?

▌Then you might say

▌And while that is true…

▌… we are admittedly lacking tools

Unikernels are hard to debug.
Kernel debugging is horrible!

But that’s not really true!
Unikernels are a single linked binary.
They have a shared address space.

You can just use gdb!

c
li
p
 a

rt
s
:

c
li
p
p
ro

je
c
t.

in
fo

6

Unikernels?

▌Faster, smaller, better!

▌But ever heard this?

▌Then you might say

▌And while that is true…

▌… we are admittedly lacking tools

▌Such as effective profilers

Unikernels are hard to debug.
Kernel debugging is horrible!

But that’s not really true!
Unikernels are a single linked binary.
They have a shared address space.

You can just use gdb!

c
li
p
 a

rt
s
:

c
li
p
p
ro

je
c
t.

in
fo

7

Enter uniprof

▌Goals:

Performance profiler

No changes to profiled code necessary

Minimal overhead

8

Enter uniprof

▌Goals:

Performance profiler

No changes to profiled code necessary

Minimal overhead

 Useful in production environments

9

Enter uniprof

▌Goals:

Performance profiler

No changes to profiled code necessary

Minimal overhead

 Useful in production environments

▌So, a stack profiler

Collect stack traces at regular intervals

call_main+0x278

main+0x1c

schedule+0x3a

monotonic_clock+0x1a

10

Enter uniprof

▌Goals:

Performance profiler

No changes to profiled code necessary

Minimal overhead

 Useful in production environments

▌So, a stack profiler

Collect stack traces at regular intervals

Many of them

call_main+0x278

main+0x1c

schedule+0x3a

monotonic_clock+0x1a

call_main+0x278

main+0x1c

netfront_rx+0xa

call_main+0x278

main+0x1c

netfront_rx+0xa

netfront_get_responses+0x1c

netfrontif_rx_handler+0x20

netfrontif_transmit+0x1a0

netfront_xmit_pbuf+0xa4

call_main+0x278

main+0x1c

blkfront_aio_poll+0x32

11

Enter uniprof

▌Goals:

Performance profiler

No changes to profiled code necessary

Minimal overhead

 Useful in production environments

▌So, a stack profiler

Collect stack traces at regular intervals

Many of them

Analyze which code paths show up often

• Either because they take a long time

• Or because they are hit often

Point towards potential bottlenecks

call_main+0x278

main+0x1c

schedule+0x3a

monotonic_clock+0x1a

call_main+0x278

main+0x1c

netfront_rx+0xa

call_main+0x278

main+0x1c

netfront_rx+0xa

netfront_get_responses+0x1c

netfrontif_rx_handler+0x20

netfrontif_transmit+0x1a0

netfront_xmit_pbuf+0xa4

call_main+0x278

main+0x1c

blkfront_aio_poll+0x32

12

xenctx

▌Turns out, a stack profiler for Xen already exists

Well, kinda

13

xenctx

▌Turns out, a stack profiler for Xen already exists

Well, kinda

▌xenctx is bundled with Xen

 Introspection tool

Option to print call stack

$ xenctx -f -s <symbol table file> <DOMID>

[...]

Call Trace:

 [<0000000000004868>] three+0x58 <--

00000000000ffea0: [<00000000000044f2>] two+0x52

00000000000ffef0: [<00000000000046a6>] one+0x12

00000000000fff40: [<000000000002ff66>]

00000000000fff80: [<0000000000012018>] call_main+0x278

14

xenctx

▌Turns out, a stack profiler for Xen already exists

Well, kinda

▌xenctx is bundled with Xen

 Introspection tool

Option to print call stack

▌So if we run this over and over, we have a stack profiler

Well, kinda

$ xenctx -f -s <symbol table file> <DOMID>

[...]

Call Trace:

 [<0000000000004868>] three+0x58 <--

00000000000ffea0: [<00000000000044f2>] two+0x52

00000000000ffef0: [<00000000000046a6>] one+0x12

00000000000fff40: [<000000000002ff66>]

00000000000fff80: [<0000000000012018>] call_main+0x278

15

xenctx

▌Downside: xenctx is slow
Very slow: 3ms+ per trace

Doesn’t sound like much, but really adds up (e.g., 100 samples/s = 300ms/s)

Can’t really blame it, not designed as a fast stack profiler

16

xenctx

▌Downside: xenctx is slow
Very slow: 3ms+ per trace

Doesn’t sound like much, but really adds up (e.g., 100 samples/s = 300ms/s)

Can’t really blame it, not designed as a fast stack profiler

▌Performance isn’t just a nice-to-have

We interrupt the guest all the time

Can’t walk stack while guest is running: race conditions

High overhead can influence results!

Low overhead is imperative for use on production unikernels

17

xenctx

▌Downside: xenctx is slow
Very slow: 3ms+ per trace

Doesn’t sound like much, but really adds up (e.g., 100 samples/s = 300ms/s)

Can’t really blame it, not designed as a fast stack profiler

▌Performance isn’t just a nice-to-have

We interrupt the guest all the time

Can’t walk stack while guest is running: race conditions

High overhead can influence results!

Low overhead is imperative for use on production unikernels

▌First question: extend xenctx or write something from scratch?

Spoiler: look at the talk title

More insight when I come to the evaluation

18

What do we need?

19

What do we need?

▌Registers (for FP, IP)
This is pretty easy: getvcpucontext() hypercall

20

What do we need?

▌Registers (for FP, IP)
This is pretty easy: getvcpucontext() hypercall

▌Access to stack memory (to read return addresses and next FPs)

This is the complicated step

We need to do address resolution

21

What do we need?

▌Registers (for FP, IP)
This is pretty easy: getvcpucontext() hypercall

▌Access to stack memory (to read return addresses and next FPs)

This is the complicated step

We need to do address resolution

• Memory introspection requires mapping memory over

• We’re looking at (uni)kernel code

• But there’s still a virtual  (guest) physical resolution

22

What do we need?

▌Registers (for FP, IP)
This is pretty easy: getvcpucontext() hypercall

▌Access to stack memory (to read return addresses and next FPs)

This is the complicated step

We need to do address resolution

• Memory introspection requires mapping memory over

• We’re looking at (uni)kernel code

• But there’s still a virtual  (guest) physical resolution

• Even in guest is PVH, can’t benefit from it, because we’re looking in from outside

• So we need to manually walk page tables

23

What do we need?

▌Registers (for FP, IP)
This is pretty easy: getvcpucontext() hypercall

▌Access to stack memory (to read return addresses and next FPs)

This is the complicated step

We need to do address resolution

• Memory introspection requires mapping memory over

• We’re looking at (uni)kernel code

• But there’s still a virtual  (guest) physical resolution

• Even in guest is PVH, can’t benefit from it, because we’re looking in from outside

• So we need to manually walk page tables

▌Symbol table (to resolve function names)
Thankfully, this is easy again: extract symbols from ELF with nm

24

Stack

Local variables

Registers IP

FP

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

25

Stack

Local variables

Registers IP

FP

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

26

Stack

Local variables

Registers IP

FP

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

IP

27

Stack

Local variables

Registers IP

FP

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

IP

28

Stack

Local variables

Registers IP

FP

function two() {

 […]

 three();

}

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

IP

29

Stack

Local variables

Registers IP

FP

function two() {

 […]

 three();

}

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

two +0xc1

IP

FP+1word

30

Stack

Local variables

Registers IP

FP

function one() {

 […]

 two();

 […]

}

function two() {

 […]

 three();

}

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

two +0xc1

IP

FP+1word

31

Stack

Local variables

Registers IP

FP

function one() {

 […]

 two();

 […]

}

function two() {

 […]

 three();

}

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

two +0xc1

one +0x0d

IP

FP+1word

*FP+1word

32

Stack

Local variables

Registers IP

FP

function one() {

 […]

 two();

 […]

}

function two() {

 […]

 three();

}

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

two +0xc1

one +0x0d

IP

FP+1word

*FP+1word

33

Stack

Local variables

Registers IP

FP

function one() {

 […]

 two();

 […]

}

function two() {

 […]

 three();

}

function three() {

 […]

}

…

… …

Frame pointer

NULL

Return address

Other registers

Local variables

Frame pointer

Return address

Other registers

Local variables

Stack trace:

three +0xca

two +0xc1

one +0x0d

[done]

IP

FP+1word

*FP+1word

**FP==NULL

34

Walking the page tables (x86-64)

CR3

virtual address

35

Walking the page tables (x86-64)

CR3

virtual address

36

Walking the page tables (x86-64)

CR3

virtual address

37

Walking the page tables (x86-64)

CR3

L1

virtual address

38

Walking the page tables (x86-64)

CR3

L1

virtual address

39

Walking the page tables (x86-64)

CR3

L1 L2

virtual address

40

Walking the page tables (x86-64)

CR3

L1 L2 L3

virtual address

41

Walking the page tables (x86-64)

CR3

L1 L2 L3 L4

virtual address

42

Walking the page tables (x86-64)

CR3

L1 L2 L3 L4

(guest) physical address

virtual address

43

Walking the page tables (x86-64)

CR3

L1 L2 L3 L4

(guest) physical address

▌So many maps:

5 per entry * stack depth

map! map! map! map!

map!

virtual address

44

Walking the page tables (x86-64)

CR3

L1 L2 L3 L4

(guest) physical address

▌So many maps:

5 per entry * stack depth

▌Then again, page table locations don’t change…

Neither do stack locations (exception: lots of thread spawning)

Effective caching

map! map! map! map!

map!

virtual address

45

Walking the page tables (x86-64)

CR3

L1 L2 L3 L4

(guest) physical address

▌So many maps:

5 per entry * stack depth

▌Then again, page table locations don’t change…

Neither do stack locations (exception: lots of thread spawning)

Effective caching

virtual address

map! map! map! map!

map!

46

Create Symbol Table

▌Stack only contains addresses

▌Symbol resolution necessary

47

Create Symbol Table

▌Stack only contains addresses

▌Symbol resolution necessary

▌Trivial

Virtual addresses mapped 1:1 into unikernel address space

nm is your friend

$ nm -n <ELF> > symtab

$ head symtab

0000000000000000 T _start

0000000000000000 T _text

0000000000000008 a RSP_OFFSET

0000000000000017 t stack_start

00000000000000fc a KERNEL_CS_MASK

0000000000001000 t shared_info

0000000000002000 t hypercall_page

0000000000003000 t error_entry

000000000000304f t error_call_handler

0000000000003069 t hypervisor_callback

48

Create Symbol Table

▌Stack only contains addresses

▌Symbol resolution necessary

▌Trivial

Virtual addresses mapped 1:1 into unikernel address space

nm is your friend

▌Needs unstripped binary

You’re welcome to strip it afterwards

$ nm -n <ELF> > symtab

$ head symtab

0000000000000000 T _start

0000000000000000 T _text

0000000000000008 a RSP_OFFSET

0000000000000017 t stack_start

00000000000000fc a KERNEL_CS_MASK

0000000000001000 t shared_info

0000000000002000 t hypercall_page

0000000000003000 t error_entry

000000000000304f t error_call_handler

0000000000003069 t hypervisor_callback

49

What do we get?

50

What do we get? Flamegraphs!

▌ Y Axis: call trace

 Bottom: main function, each layer: one call depth

▌ X Axis: relative run time

 Call paths are aggregated, no same call path twice in graph

https://github.com/brendangregg/flamegraph

51

What do we get? Flamegraphs!

▌Y Axis: call trace

 Bottom: main function, each layer: one call depth

▌X Axis: relative run time

 Call paths are aggregated, no same call path twice in graph

▌ In this example: netfront functions “heavy hitters”

 netfront_xmit_pbuf

 netfront_rx

 but also blkfront_aio_poll

1

3 2

1

3 2

2
1

3

https://github.com/brendangregg/flamegraph

52

What do we get? Flamegraphs!

▌Y Axis: call trace

 Bottom: main function, each layer: one call depth

▌X Axis: relative run time

 Call paths are aggregated, no same call path twice in graph

▌ In this example: netfront functions “heavy hitters”

 netfront_xmit_pbuf

 netfront_rx

 but also blkfront_aio_poll

1

3 2

1

3 2

2
1

3

Yep, it’s a MiniOS*
doing network
communication

*with lwip for TCP/IP

https://github.com/brendangregg/flamegraph

53

Try 1: improving xenctx performance

▌xenctx translates and maps memory addresses every stack walk

 Huge overhead

 Solution: cache mapped memory and virtualmachine translations

54

Try 1: improving xenctx performance

▌xenctx translates and maps memory addresses every stack walk

 Huge overhead

 Solution: cache mapped memory and virtualmachine translations

▌xenctx resolves symbols via linear search

 Solution: use binary search

55

Try 1: improving xenctx performance

▌xenctx translates and maps memory addresses every stack walk

 Huge overhead

 Solution: cache mapped memory and virtualmachine translations

▌xenctx resolves symbols via linear search

 Solution: use binary search

 (Or, even better, do resolutions offline after tracing)

56

Try 1: improving xenctx performance

▌xenctx translates and maps memory addresses every stack walk

 Huge overhead

 Solution: cache mapped memory and virtualmachine translations

▌xenctx resolves symbols via linear search

 Solution: use binary search

 (Or, even better, do resolutions offline after tracing)

57

Try 1: improving xenctx performance

▌xenctx translates and maps memory addresses every stack walk

 Huge overhead

 Solution: cache mapped memory and virtualmachine translations

▌xenctx resolves symbols via linear search

 Solution: use binary search

 (Or, even better, do resolutions offline after tracing)

At this point, I abandoned xenctx and (re)wrote uniprof from scratch.

58

Try 2: uniprof

▌100-fold improvement is nice! But we can do better:

Xen 4.7 introduced low-level libraries (libxencall, libxenforeigmemory)

Another significant reduction by ~ factor of 3

59

Try 2: uniprof

▌100-fold improvement is nice! But we can do better:

Xen 4.7 introduced low-level libraries (libxencall, libxenforeigmemory)

Another significant reduction by ~ factor of 3

▌End result: overhead of ~0.1% @101 samples/s

60

Performance on ARM

▌uniprof supports ARM (xenctx doesn’t)

Main challenge: different page table design

61

Performance on ARM

▌uniprof supports ARM (xenctx doesn’t)

Main challenge: different page table design

▌ARM: much slower, overhead higher

But the CPU is much slower, too (Intel Xeon @3.7GHz vs. Cortex A20 @1GHz)

So fewer samples/s needed for same effective resolution

62

No Frame Pointer? No Problem!

▌Stack walking relies on frame pointer

Optimizations can reuse FP as general-purpose register (-fomit-frame-pointer)

63

No Frame Pointer? No Problem!

▌Stack walking relies on frame pointer

Optimizations can reuse FP as general-purpose register (-fomit-frame-pointer)

▌But we can do without FPs

Use stack unwinding information

• It’s already included if you use C++ (for exception handling)

• It doesn’t change performance

• Only binary size

DWARF standard

$ readelf –S <ELF>

There are 13 section headers, starting at offset 0x40d58:

Section Headers:

 [Nr] Name Type Address Offset

 Size EntSize Flags Link Info Align

[...]

 [4] .eh_frame PROGBITS 0000000000035860 00036860

 00000000000066f8 0000000000000000 A 0 0 8

 [5] .eh_frame_hdr PROGBITS 000000000003bf58 0003cf58

 000000000000128c 0000000000000000 A 0 0 4

[...]

64

Unwinding without Frame Pointers

▌How does it work?

65

Unwinding without Frame Pointers

▌How does it work?

66

Unwinding without Frame Pointers

▌How does it work?

▌Lookup table

For every program address

• The current frame size

• Locations of registers to restore (GP and IP)

67

Unwinding without Frame Pointers

▌How does it work?

▌Lookup table

For every program address

• The current frame size

• Locations of registers to restore (GP and IP)

 Important for exception handling

• Exit functions immediately until handler is found

68

Unwinding without Frame Pointers

▌How does it work?

▌Lookup table

For every program address

• The current frame size

• Locations of registers to restore (GP and IP)

 Important for exception handling

• Exit functions immediately until handler is found

▌Index to quickly find table entry

69

Unwinding without Frame Pointers

▌How does it work?

▌Lookup table

For every program address

• The current frame size

• Locations of registers to restore (GP and IP)

 Important for exception handling

• Exit functions immediately until handler is found

▌Index to quickly find table entry

▌Several library implementations

uniprof uses libunwind

Actually, a libunwind patched for Xen guest introspection support

Might be useful for other tools?

70

Performance: uniprof w/ libunwind

▌Performance lower than with frame pointer

Reason: libunwind does more than we need (full register reconstruction etc.)

▌Different library or own implementation promising

But “good enough” for many cases

And a good area for future work

71

Enter the title.

Thank you!

Questions?

uniprof: https://github.com/cnplab/uniprof
libunwind-xen: https://github.com/cnplab/libunwind
FlameGraphs: https://github.com/brendangregg/flamegraph

https://github.com/cnplab/uniprof
https://github.com/cnplab/libunwind
https://github.com/brendangregg/flamegraph

